AN EFFICIENT AND SECURE AUTHENTICATE FRAMEWORK FOR CLOUD COMPUTING

M.sudha Rani¹.V.Sudhakar²

¹M.Tech Student, Dept.Of CSE, Sarojini Institute of Technology, Telaprolu(V), Unguturu (M), Gannavaram, krishna (D). A.P

²Assistant Professor, Dept.Of CSE, Sarojini Institute of Technology, Telaprolu(V), Unguturu (M), Gannavaram, krishna (D). A.P

ABSTRACT: Cloud computing has an important aspect for the companies to build and deploy their infrastructure and application. Data Storage service in the cloud computing is easy as compare to the other data storage services. At the same time, cloud security in the cloud environment is challenging task. Security issues ranging from missing system configuration, lack of proper updates, or unwise user actions from remote data storage. It can expose user's private data and information to unwanted access. it consider to be biggest problem in a cloud computing. The focus of this study based on the secure cloud framework and to define a methodology for cloud that will protect user's data and highly important information from malicious insider as well as outsider attacks. It also protects their data from service hijacking with LDAP authentication.

Keywords: Cloud computing, Security, Authentication, LDAP.

1. INTRODUCTION:

Cloud computing is one of the important research aspects of distributed computing. Companies such as Google, IBM, saleforce.com, and Microsoft are the biggest player of cloud computing environment. Cloud computing contains to services, applications, and data storage delivered online through powerful file servers. Deployment of cloud computing depends on whether the cloud is a private, community, public, or hybrid one. Private clouds are operated for a particular organization, whereas community clouds are mutual by a number of organizations. Public clouds are available to the common public or large groups of Industries, while hybrid clouds combine public and private elements in the same data center. There are three types of models for providing the services of cloud. These three models are often referred as the SPI (Software, Platform and Infrastructure) model. These services are known as SaaS. PaaS and IaaS. These services are used to make IT

Infrastructure scalable, reliable and cost effective. Sometimes conventional data center best fit for the organization, but for business agility and economical reason cloud is imported reason for the companies [1]. In this paper, security concern of cloud computing will be analyzed and propose a secure framework for cloud computing.

2. LITERATURE REVIEW:

Recently cloud computing security received significant attention from IT industries and research communities as there are still several unresolved issues which needed to be addressed before important development take place. There is a file system that provides a secure file storage service. Currently, each web application stores its own user data, which is not only burdens the applications with storing, managing, and securing user data but also dispossess users from controlling their own data [2]. For improvement in security, analyst have their different view as privacy is an important

issues in Cloud computing in terms of user trust and need to be considered at every phase of design [3]. Sometime it happens that without awareness of company's detail user record their data; companies may send user's sensitive information to other companies for economical reason, from transformation of data cyber criminal may steal the user email and bank's detail etc. The awareness is also increases for the need for design for privacy from both companies and government organization [4]. Authentication may the required user name or password or any the authentication techniques hardware token.software token. digital certificates on smart cards and USB Tokens, out-of-band authentication and biometric [5]. It is observed that everyday new security advisors are published [6] [7]. In this paper, security concern of cloud computing will be analyzed and propose a secure framework for cloud computing.

3. Problem-Security challenges and issues of cloud computing.

The cloud computing security has to be part of company's overall security strategy. Security risks break and threats can come in so many forms. It comes from so numerous places that many companies take a comprehensive approach to security management across IT and the business function. For example, companies tracks someone's identity by latest technology whether this person enters a company's building or access corporate information, either from company's perimeter or from any other external location[8]. A company planning to secure cloud environment will generally focus on the broad range of potential vulnerabilities to its data center. It is also necessary that safeguard sensitive corporate, customer, and partners highly information whenever it is located. A company's software

application may include lots of built in application and data level protection, but there are many situations where these protections aren't enough. Currently, IT industries face a perimeter security problem because 70 percent of security breaches are caused by the malicious insider. Whenever, companies are going to plan to deploy cloud services. They must have to deal with insider attacks as well as outside attacks (threats). The most important threads of cloud computing are abuse and nefarious use of cloud computing, insecure interface and API, malicious insider, shared technological issues, data loss or leakage, account on service hijacking, unknown risk profile etc [9]. Thus, we suggest a secure architecture to avoid abuse and nefarious use of cloud computing, design a framework to secure insecure interfaces and API, account on service hijacking and malicious insider with following consideration. Authenticate all people to access network. • Frame all access permissions so users can have access only to application and data that they have been granted. Authenticate all the software of the company. • It monitors network activities. • Log all user activity and program activity and analyzed it for unexpected behavior. • Encrypt data, when there is need of some extra protection. • Regularly check all networks for vulnerabilities in all software.

4. Proposed Idea The basic idea of cloud computing is that it describes a enhancement, utilization and delivery model for IT services based on Internet protocols. The best feature of cloud computing is that it has made access to computing resources a lot effortless way, but with that convenience has come a whole new universe of threats vulnerabilities. Our work focus is to provide a solution for the threats that are the major issue for anyone when they want to adopt cloud model and services for their work. For this purpose, a

framework should be designed for execution of data and information securely in cloud computing environment. It will protect user's data, information from various attacks. In this paper, we explore the security issues and challenges for the cloud computing and suggested a cloud computing framework to secure user's private data, messages and highly important information.

4. Proposed Idea:

The basic idea of cloud computing is that it describes a new enhancement, utilization and delivery model for IT services based on Internet protocols. The best feature of cloud computing is that it has made access to computing resources a lot effortless way, but with that convenience has come a whole new universe of threats and vulnerabilities. Our work focus is to provide a solution for the threats that are the major issue for anyone when they want to adopt cloud model and services for their work. For this purpose, a framework should be designed for execution of data and information securely in cloud computing environment. It will protect user's data, information from various attacks. In this paper, we explore the security issues and challenges for the cloud computing and suggested a cloud computing framework to secure user's private data, messages and highly important information.

5. Methodology:

In a cloud computing environment, any user can apply for any server to access the services of other users. This called as impersonation. An opponent can pretend to be another user and obtain unauthorized privileges on cloud machines. To counter this risk, servers must be able to confirm the authentication proof of user who request service. Fig.1 represents the functioning of authentication mechanism

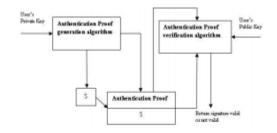


Figure 1: Represent the generation and verification of authentication proof

Each cloud server can be required to undertake this task for each client/server interaction, but in an open environment, this places a substantial burden on each cloud. There are the step are required to access the data from our secure cloud framework which include Invoke APIs with Web-Services, Register access gate and pass credential to AM (Access Management) provider, Validate credential, Validated, Pass Security token to access gate, Issued Security token to user group, Server responsible for generating encrypted key, Verified Encrypted key and forward key to encryption key provider. A substitute is to use an authentication server (AS) that knows the passwords of all users. It also stores in a cloud database or lightweight directory access protocol (LDAP). LDAP provides a standard format to access the certificate directories. They are stored on network LDAP servers and provide public keys. LDAP is based on the X.500 standard, but significantly simpler and more readily adapted to meet user's need.

Kerberos AS problem Kerberos model is having no provision of host security. Each network service requires a different host name that will need its own set of Kerberos keys. It creates complication in virtual hosting and clusters. Kerberos model is running with a strict time requirements, which means the clocks of the involved in hosts must be synchronized within configured limits. A ticket has a time availability

period and depends host clock on synchronization. If the host clock is not synchronized with the Kerberos server clock, the authentication will fail. In our research we found that Kerberos and LDAP together make for a great combination in cloud computing environment. Kerberos is used to manage credential securely (authentication) while LDAP is used for hold authoritative information about the account such as what they're allowed to access (authorization). Fig. 2 represents the working of AS. In this scenario, the user logs on to a web services and requests access to cloud data server (CDS). The client module U in the user's workstation requests the user's password and then sends a message to the AS that includes the user's ID, the server's ID, and the user's password. The AS checks it's from LDAP server with simple authentication mechanism to see if the user has supplied the proper password. LDAP checks given authentication for a Kerberos principal and contacts appropriate KDC (Kerberos Data Center). User ID and ticket must be check whether this user is permitted access to server CDS(Cloud Data Server). After passing the tests, the AS accepts the user as authentication. AS creates a ticket that contains the user's ID, network address and the cloud server's ID. The ticket is encrypted using the secret key shared by the AS and cloud servers. This ticket is then sent back to U. Because the ticket is encrypted, it cannot be altered by U or by an opponent. With this ticket, user can now apply to CDS for service. U sends a message to CDS containing U's ID and the ticket. CDS decrypts the ticket and verifies that the user ID in the ticket is the same as the unencrypted user ID in the message. If these are two matches, the server considers the user authentication and grants the requested service.

6. CONCLUSION AND FUTURE WORK

Security and authentication from the malicious insider or outsider threat is the major concerns for companies to adopt cloud computing environment. In this paper, we discuss about some of the top threat of cloud security concerns and also provide a simple and efficient secure framework for the authentication. The work will more enhanced with some more powerful encryption keys. The encryption key will more needed when user have to prove its identity to the TGS by revealing the secret information in secure manner. It is also require when the ticket presenter is not same as the user for whom the ticket was issued and the threat is that an opponent will steal the ticket and use it before expire. The future work will focus on the analyzing unlike encryption algorithm used by different cloud computing tools.

REFERENCES:

- [1] Janssen, M. and A. Johan, "Motives for Establishing Shared Service Centers in Public Administrations", International Journal of Information Management, 2006, pp.102-116.
- [2] Francis Hsu, and Hao Chen, "Secure File System Services for Web 2.0 Application", CCSW'09, November 13 2009, Chicago, Illinois, USA, pp11-17.
- [3] Harold C. Lim et al, "Automated Control in Cloud Computing: Challenges and Opportunities", ACDC'09, June 19, 2009, Barcelona, Spain, pp 13-18.
- [4] Siani Pearson, "Taking Account of privacy when designing Cloud Computing" Cloud 09, may 23, 2009, pp.44-52.
- [5] Entire Deniz Sarier, "A new approach for Biometric Templates storage and Remote Authentication", ICB'09: Proceeding of the 3rd International workshop on Advances in

Biometrics, Volume 5558/2009, June 2009, pp 909-918.

- [6] D. kesavaroja, R.Balasubramaniam et. al, "Implementation of Cloud Data Server (CDS) for providing secure services in E-Business", IJDMS, 2005, pp 18-21.
- [7] Wenchao Zhou et al, "Toward-a Data Centric View of Security", CloudDB 2010, October 30, 2010, Toronto, Ontario, Canada, pp 25-32.
- [8] B. Clifford Neuman and Theodore Ts'o (September 1994). "Kerberos: An Authentication Service for Computer Networks". IEEE Communications.
- [9] "Security Guidance for Critical Areas of Focus in Cloud Computing", April 2009, presented by Cloud Security Alliance (CSA).

