
International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
JANUARY 2016
VOLUME -4
 ISSUE-5
Page:7880-88

Analysis of Efficient CRC Implementation

Configurations

Abstract-A cyclic redundancy check (CRC) is an

error-detecting code commonly used in digital

networks and storage devices to detect accidental

changes to raw data. Blocks of data entering these

systems get a short check value attached, based on the

remainder of a polynomial division of their contents;

on retrieval the calculation is repeated, and corrective

action can be taken against presumed data corruption

if the check values do not match. Error correction

codes provides a mean to detect and correct errors

introduced by the transmission channel. A high-speed

parallel cyclic redundancy check (CRC)

implementation based on unfolding, pipelining, and

retiming algorithms. CRC architectures are first

pipelined to reduce the iteration bound by using novel

look-ahead pipelining methods and then unfolded

and retimed to design high-speed parallel circuits.

The study and implementation using Verilog HDL.

Modalism Xilinx Edition will be used for simulation

and functional verification. Xilinx ISE will be used

for synthesis and bit file generation. The Xilinx Chip

scope will be used to test the results on Spartan 3E.

Keywords—Cyclic redundancy checksum (CRC),

digital logic, error detection,parallel,programmable.

I-INTRODUCTION

Cyclic redundancy check is commonly used in data

communication and other fields such as data storage,

data compression, as a vital method for dealing with

data errors. Usually, the hardware implementation of

CRC computations is based on the linear feedback shift
registers (LFSRs), which handle the data in a serial

way. Though, the serial calculation of the CRC codes

cannot achieve a high throughput. In contrast, parallel

CRC calculation can significantly increase the

throughput of CRC computations. For example, the

throughput of the 32-bit parallel calculation of CRC-32

can achieve several gigabits per second however that is

still not enough for high speed application such as

Ethernet networks. A possible solution is to process

more bits in parallel; Variants of CRCs are used in

applications like CRC-16 BISYNC protocols, CRC32

in Ethernet frame for error detection, CRC8 in ATM,

CRC-CCITT in X-25 protocol, disc storage, SDLC,

and XMODEM.

 II-CRC’S IN HIGH SPEED WIRELESS LAN

In networking environments, the cyclic

redundancycheck (CRC) is widely utilized to

determine whether errors have been introduced during

transmissions over physical links. In this paper, we

focus on the CRC calculation in WLAN where the

packet size is huge and hence slow CRC calculation

may become bottleneck for communication process.

Based on this concept, paper present a novel

implementation of the CRC implementation through

multiple execution units that calculate CRC on

different part of packet and then combine the result to

get the final CRC. Consequently, the number of cycles

utilized to recalculate the CRC codes is dramatically

reduced. Furthermore, estimation on the maximum

throughput is made based on synthesis results of our

implementation and under that assumption, calculate

actual CRC operation has been done. A performance

study of the project is done by calculation of CRC

with 2, 4, 8 execution units on same data block. There

are several techniques for generating check bits that

can be added to a message. Perhaps the simplest is to

append a single bit, called the ―parity bit. Which

makes the total number of 1-bits in the code

vector.(message with parity bit appended) even (or

odd). If a single bit gets altered in transmission, this

will change the parity from even to odd (or the

reverse). The sender generates the parity bit by simply

summing the message bits modulo 2—that is, by

exclusive or’ing them together. It then appends the

KrishnaveniVajrala

Department of ECE,

Sasi Institute of Technology and

Engineering, Tadepalligudem.

kkrishnaveni55@gmail.com

V.V.N Sujit

Assistant Professor

Department of ECE,

Sasi Institute of Technology and

Engineering, Tadepalligudem.

vvnsujit@sasi.ac.in

J.Lakshmi Narayana

Assistant Professor

Department of ECE,

Sasi Institute of Technology and

Engineering, Tadepalligudem.

JL@sasi.ac.in

International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
JANUARY 2016
VOLUME -4
 ISSUE-5
Page:7880-88

parity bit (or its complement) to the message. The

receiver can check the message by summing all the

message bits modulo 2 and checking that the sum

agrees with the parity bit. Equivalently, the receiver

can sum all the bits (message and parity) and check

that the result is 0 (if even parity is being used).This

simple parity technique is often said to detect 1-bit

errors. Actually it detects errors in any odd number of

bits (including the parity bit), but it is a small comfort

to know you are detecting 3-bit errors if you are

missing 2-bit errors.

Fig.1. XOR Tree

Other techniques for computing a checksum are to

form the exclusive or of all the bytes in the message, or

to compute a sum with end-around carry of all the

bytes. In the latter method the carry from each 8-bit

sum is added into the least significant bit of the
accumulator. It is believed that this is more likely to

detect errors than the simple exclusive or, or the sum of

the bytes with carry discarded. A technique that is

believed to be quite good in terms of error detection,

and which is easy to implement in hardware, is the

cyclic redundancy check. This is another way to

compute a checksum, usually eight, 16, or 32 bits in

length that is appended to the message. We will briefly

review the theory and then give some algorithms for

computing in software a commonly used 32-bit CRC

checksum. The CRC is based on polynomial

arithmetic, in particular, on computing the remainder of
dividing one polynomial in GF (2) (Galois field with

two elements) by another. It is a little like treating the

message as a very large binary number, and computing

the remainder on dividing it by a fairly large prime

such as intuitively, one would expect this to give a

reliable checksum. A polynomial in GF (2) is a

polynomial in a single variable x whose coefficients

are 0 or 1. Addition and subtraction are done modulo

2—that is, they are both the same as the exclusive and

operator. For example, the sum of the polynomials x3 +

x + 1 and x4 +x3+ x2+ x is as is their difference. These

polynomials are not usually written with minus signs,

but they could be, because a coefficient of –1 is
equivalent to a coefficient of 1. Multiplication of such

polynomials is straightforward. The product of one

coefficient by another is the same as their combination

by the logical and operator, and the partial products are

summed using exclusive or. Multiplication isnot

needed to compute the CRC checksum. Division of

polynomials over GF(2) can be done in much the same

way as long division of polynomials over the integers.

Below is an example.

Fig.2. Division operation

The reader might like to verify that the quotient of

multiplied by the divisor of x3+ x + 1 plus the

remainder of equals the dividend. The CRC method

treats the message as a polynomial in GF (2). For

example, the message 11001001, where the order of

transmission is from left to right (110…) is treated as a
representation of the polynomialx7+ x6 + x3+ 1. The

sender and receiver agree on a certain fixed polynomial

called the generator polynomial. For example, for a 16-

bitCRCtheCCITT(ComitéConsultatifInternationaleTélé

graphique ET Téléphonique) 1 has chosen the

polynomial x16 + x12+ x5 + 1 which is now widely

used for a 16-bit CRC checksum. To compute an r-bit

CRC checksum, the generator polynomial must be of

degree r. The sender appends r 0-bits to the m-bit

message and divides the resulting polynomial of degree

m + r – 1 by the generator polynomial. This produces a
remainder polynomial of degree r – 1 (or less). The

remainder polynomial has r coefficients, which are the

checksum. The quotient polynomial is discarded. The

International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
JANUARY 2016
VOLUME -4
 ISSUE-5
Page:7880-88

data transmitted (the code vector) is the original m-bit

message followed by the rbit checksum.

 III-HARDWARE FEEDBACK SHIFT REGISTER

Fig.3. Feedback Shift Register

Initialize the CRC register to all 0-bits. Get first/next

message bit m. If the high-order bit of CRC is 1, Shift

CRC and m together left 1 position, and XOR the result

with the low-order r bits of G. Otherwise, Just shift

CRC and m left 1 position. If there are more message

bits, go back to get the next one. CRC is playing a

main role in the networking environment to detect the

errors. With challenging the speed of transmitting data,

to synchronize with speed, it’s necessary to increase

speed of CRC generation. Most electrical and computer

engineers are familiar with the cyclic redundancy

check (CRC). Many know that it’s used in
communication protocols to detect biterrors, and that

it’s essentially a remainder of the modulo-2long

division operation. Some have had closer encounters

with the CRC and know that it’s implemented as a

linear feedback shift register (LFSR) using flip-flops

and XOR gates. They likely used an online tool or an

existing example to generate parallel CRC code for a

design.

In computing, a pipeline is a set of data processing

elements connected in series, so that the output of one

element is the input of the next one. The elements of a
pipeline are often executed in parallel or in time-sliced

fashion; in that case, some amount of buffer storage is

often inserted between elements.

Retiming is the technique of moving the structural

location of latches or registers in a digital circuit to

improve its performance, area, and/or power

characteristics in such a way that preserves its

functional behavior at its outputs.

Unfolding is a transformation technique of

duplicating the functional blocks to increase the

throughput of the DSP program in such a way that

preserves its functional behavior at its Outputs.

Unfolding in general program is as known as Loop

unrolling. Unfolding has applications in designing

high-speed and low-power ASIC architectures. One

application is to unfold the program to reveal hidden

concurrency so that the program can be scheduled to a

smaller iteration period, thus increasing the throughput
of the implementation. Another Application is parallel

processing in word level or bit level. Therefore these

transformed circuit could increase the throughput and

decrease the power consumption.

(a) Fast CRC:

Fig.4.Fast CRC Update Architecture

Our fast CRC update method is extended from the

parallel CRC calculation and can adapt to a number of

bits processed in parallel. The method can also reduce

the data traffic and power consumption of the CRC

calculation unit.

(b) LFSR in CRC:

In traditional hardware implementations, a simple

circuit based on shift registers performs the CRC

calculation by handling the message one bit at a time.
A typical serial CRC using LFSRs is it illustrates one

possible structure for CRC32. There are a total of 32

registers the middle ones are left out for brevity. The

combinational logic operation in the figure is the XOR

operation. One bit is shifted in at each clock pulse. This

circuit operates in a fashion similar to manual long

division. The XOR gates hold the coefficients of the

divisor corresponding to the indicated powers of x.

Although the shift register approach to computing

CRCs is usually implemented in hardware, this

algorithm can also be used in software when bit-by-bit

International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
JANUARY 2016
VOLUME -4
 ISSUE-5
Page:7880-88

processing is adequate.

Fig.5.Serial CRC circuit using LFSRs

The proposed design starts from LFSR, which is

generally used for serial CRC. An unfolding algorithm

is used to realize parallel processing. However, direct

application of unfolding may lead to a parallel CRC

circuit with long iteration bound, which is the lowest

achievable CP.

Fig.6.F-matrix algorithm

Two novel look-ahead pipelining methods are

developed to reduce the iteration bound of the original

serial LFSR CRC structures; then, the unfolding

algorithm is applied to obtain a parallel CRC structure

with low iteration bound. The retiming algorithm is

then applied to obtain the achievable lowest CP.

Parallelly data input is processed; it is ANDed with the

F-matrix generation from the generated polynomial.
Result of that will XORed with present state CRC

checksum. The final result will obtained after (k+m)/w

cycles. Generation of F-matrix: F-matrix generated

from the generated polynomial, matrix form can be

represented as:

Where {p0……pm-1} is generator polynomial. For

example, the generator polynomial for CRC4 is {1, 0,

0, 1, and 1} and w-bits are parallel processed.

Where {p0……pm-1} is generator polynomial. For
example, the generator polynomial for CRC4 is {1, 0,
0, 1, and 1} and w-bits are parallel processed.

Here w=m=4, for that matrix calculated as follow.

Parallel architecture: Parallel architecture based on F-

matrix‟d‟ is data that is parallel processed (i.e. 32bit),

'X is next state, X is current state(generated CRC), F (i)

(j) is the ith row and jth column of FW matrix. If X =

[xm1 …..x1 x0]T is utilized to denote the state of the

shift registers, in linear system theory, the state

equation for LFSRs can be expressed in modular 2

arithmetic as follow. Xi´= (P0⊗ Xm-1)⊕d Where,
X(i) represents the state of the registers, X(i + 1)

denotes the state of the registers, d denotes the one bit

shift-in serial input. F is an m x m matrix and G is a 1 x

m matrix. G = [0 0 --------0 1] T. the final

representationX’=Fw⊗X⊗d.

If W-bits are parallel processed, the result of the CRC
will generated after (k+m)/w cycles.

IV- EXPERIMENT RESULTS

 Each architecture is coded in Verilog and simulated.

The simulation results and the net List simulation are

verified for each architecture. For the message bits:

11010011101100 And for the generator polynomial
1+Y+Y2+Y3 i.e., 1011.

International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
JANUARY 2016
VOLUME -4
 ISSUE-5
Page:7880-88

(a) Black Box View

CLK

INIT[0:7]

DataIN

EN

Fig.7.Black Box View

(b) Simulation Results:

CRC

GENERATOR CRC

OUT

International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
JANUARY 2016
VOLUME -4
 ISSUE-5
Page:7880-88

Fig.8.Simulation Results

(c) Table: Schematic, timing report, hardware

resources

V-CONCLUSION

Generally when high-speed data transmission is

required serial implementation is not preferred because

of slow throughput. So parallel implementation is

preferred which takes less time. CRC-32 requires 17

clock cycles to transmit 64bytes of data. But CRC-64

needs 9 clock cycles to transmit the same data. So, it

drastically reduces computation time to 50% and same
time increases the throughput.

References:

[1] Peterson, W. W. and Brown, D. T. (January 1961).
"Cyclic Codes for Error Detection". Proceedings of the
IRE 49 (1):228–235. doi: 10.1109/JRPROC. 1961.
287814.

[2] Ritter, Terry (February 1986). "The Great CRC
Mystery". Dr. Dobb's Journal 11 (2): 26–34, 76–83.
Retrieved 21 May 2009.

[3] Stigge, Martin; Plötz, Henryk; Müller, Wolf; Redlich,
Jens-Peter (May 2006). Reversing CRC – Theory and
Practice. Berlin: Humboldt University Berlin. p. 17.

Retrieved 4 February 2011."The presented methods
offer a very easy and efficient way to modify your
data so that it will compute to a CRC you want or
at least know in compute to a CRC you want or at
least know in advance."

[4] Cam-Winget, Nancy; Housley, Russ;
Wagner,David; Walker, Jesse (May 2003).
"Security Flaws in802.11 Data Link Protocols".
Communications of theACM 46 (5): 35–39. doi :
10.1145/769800. 769823.

[5] Williams, Ross N. (24 September 1996). "A
Painless Guide to CRC Error Detection
Algorithms V3.00". Retrieved 5 June 2010.

[6] WH; Teukolsky, SA; Vetterling, WT; Flannery,
BP (2007). "Section 22.4 Cyclic Redundancy and
Other Checksums". Numerical Recipes: The Art of
Scientific Computing (3rd ed.). New York:
Cambridge University Press.ISBN 978-0-521-
88068-8.

[7] Koopman, Philip; Chakravarty, Tridib (June
2004)."Cyclic Redundancy Code (CRC)
Polynomial Selection for Embedded Networks".
The International Conference on Dependable
Systems and Networks: 145 – 154. doi :
10.1109/DSN. 2004.1311885. ISBN 0-7695-2052-
9. Retrieved 14 January 2011.

[8] Cook, Greg (6 July 2012). "Catalogue of

International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
JANUARY 2016
VOLUME -4
 ISSUE-5
Page:7880-88

parametrised CRC algorithms". Retrieved 7 July
2012.

Krishnavenivajrala pursuing her M.Tech in Very

Large Scale Integration and Embedded Systems From

Sasi Institute of Technology and Engineering, West

Godavari District, Tadepalligudem, Andhra Pradesh

534101. Kkrishnaveni55@gmail.com

V.V.N Sujit Working as Assistant Professor, from

Electronics and communication Engineering in Sasi

Institute of Technology and Engineering, West

Godavari District, Tadepalligudem, Andhra Pradesh

534101. vvnsujit@sasi.ac.in
J.Lakshmi narayana Working as Assistant Professor,

from Electronics and communication Engineering in

Sasi Institute of Technology and Engineering, West

Godavari District, Tadepalligudem, Andhra Pradesh

534101.JL@sasi.ac.in

International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
JANUARY 2016
VOLUME -4
 ISSUE-5
Page:7880-88

