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ABSTRACT:

Spectrum allocated - Agency (FCC) is currently working on.the concept of white
space users “borrowing” spectrum from free license holders temporarily to improve the spectrum
utilization, i.e known as dynamic spectrum access (DSA). CRN systems can utilize dispersed
spectrum, and thus such approach is known as dispersed spectrum cognitive radio systems.
This project provides a tradeoff between a false alarm probability (Ps) and the signal to noise
ratio (SNR) value of any spectrum detector to have a certain performance. Moreover, the
performance of the cyclostationary detector (CD) and the matched filter detector (MF) is better
than the energy detector(ED) especially at low signal to noise ratio values. Unfortunately, the
cyclostationary spectrum sensing method, performance is not satisfying when the wireless fading
channels are employed. In this project we provide the comparisons between cooperative and Non
cooperative spectrum.

Introduction:What has motivated cognitive
radio technology, an emerging novel
concept in wireless access, is spectral usage
experiments done by FCC. These
experiments show that at any given time and
location, much = of the licensed (pre-
allocated) spectrum (between 80% and 90%)
is idle because licensed users (termed
primary users) rarely utilize all the assigned
frequency bands at all time. Such unutilized
bands are called spectrum holes, resulting in
spectral inefficiency. These experiments
suggest that the spectrum scarcity is caused
by poor spectrum management rather than a
true scarcity of usable frequency [1]. The
key features of a cognitive radio transceiver
are radio environment awareness and
spectrum intelligence. Intelligence can be
achieved through learning the spectrum
environment and adapting transmission
parameters [2, 3]. The dynamic spectrum

access (DSA) allows the operating spectrum
of a radio network to be selected
dynamically from the available spectrum.
DSA is applied in cognitive radio networks,
which has a hierarchical access' structure
with primary and secondary users as shown
in Fig. 1 The basic idea of DSA 'is to open
licensed spectrum to secondary users (which
are unlicensed users) while " limiting the
interference received by primary users
(which are licensed users)[2,3,4]. This
allows secondary users to operate in the best
available channel opportunistically.
Therefore, DSA requires opportunistic
spectrum sharing, which is implemented via
two strategies

", "

Figure 1. A basic cognitive
architecture.
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1.1 Spectrum Sensing: The purpose of
spectrum sensing is to identify the spectrum
holes for opportunistic spectrum access [4,
5]. After available channels (spectrum holes)
are detected successfully, they may be used
for communications by a secondary
transmitter and a secondary receiver.
Spectrum sensing is performed based on the
received signal from the primary users.
Primary users have two states, idle or active.
With the presence of the noise, primary
signal detection at a secondary user can be
viewed as a binary hypothesis testing
problem in which Hypothesis 0 (Ho,) and
Hypothesis 1 (Hj)are- the primary signal
absence and the primary signal presence,
respectively .Based on the hypothesis testing
model, several spectrum sensing techniques
have been developed[6].

3. Over View of the Paper: In section 3 we
discuss the previous work methods and
drawbacks, in section 4 we discuss proposed
work, in that basic system model and
computationally efficient energy detection
(CE-ED) techniques were evaluated by use
of Receiver Operating Characteristics
(ROC) curves over additive white Gaussian
noise (AWGN) and fading (Rayleigh &
Nakagami-m) channels. Results show that
for single wuser detection, the energy
detection technique performs better in
AWGN channel than in the fading channel
models. The performance of .cooperative
detection is better than single user detection
in fading environments. In section—we
discuss the results and Conclusions and
along with Future work.

3. Previous work:

3.1 Spectrum Sensing Techniques:
Spectrum sensing techniques include energy
detection, matched filter, cyclostationary
feature detection, and eigenvalue detection.

3.1.1 Energy detection: This measures the
energy of the received signal within the pre-
defined bandwidth and time period. The
measured energy is then compared with a
threshold to determine the status (presence/
absence) of the transmitted signal [6]. Not
requiring channel gains and other parameter
estimates, the energy detector is a low-cost
option. However, it performs poorly under
high - noise uncertainty and background
interference [7].

3.1.2 .Matched filter: This detector
requires  perfect knowledge of the
transmitted signal and the channel responses
for its coherent processing at the
demodulator [4, 6, 8]. The matched filter is
the optimal detector of maximizing the
signal-to-noise ratio (SNR) in the presence
of additive noise. Since it requires the
perfect knowledge of the channel response,
its performance degrades dramatically when
there is lack of channel knowledge due to
rapid changes of the channel conditions.
3.1.3. Cyclostationary feature detection:
If periodicity properties are introduced
intentionally to the modulated signals, the
statistical parameters of received signal such
as mean and autocorrelation rmay vary
periodically. Such periodicity of statistical
properties is used in the cyclostationary
detection [7]. Cyclostationary properties of
the received signal may be extracted by its
input-output spectral -correlation density.
The signal absence status can be identified
easily, -because the noise signal does not
have cyclostationary properties. While this
detector is able to distinguish among the
primary user signals, secondary user signals,
or interference it needs high sampling rate
and a large number of samples, and thus
increases computational complexity as
well[9].
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In order to avoid the difficulties of
previous  spectrum  sensing  detection
techniques, we propose a computationally
efficient energy  detection (CE-ED)
techniques. l.e. improved energy detection
technique under both low and high SNR
values, Logical selective method and
sequential forward search method.

4. Proposed spectrum sensing detection
technique
4.1. System Model of Spectrum Sensing

Primary users are in either idle
state or active state. With the presence of the
noise, the signal detection at the receiver can
be viewed as a binary hypothesis testing
problem[8] in which Hypothesis 0 (Ho) and
Hypothesis 1 (H;) are the primary signal
absence and the primary signal presence,
respectively. The nth, n =
sample of the received signal, y(n), can be
given under the binary hypothesis as :

1)

where x = hs.

The complex signal, s -has real component s,
and imaginary component's;, i.e., S = S+jsi.
The AWGN samples are assumed to be
circularly symmetric complex - Gaussian
(CSCG) random variables with mean- zero
(E{w(n)} = 0) and variance

257 (Var{w(n)} =207%) where E{} and

Var{:} stand for mean and variance,
respectively, ie.,w(n)~cw(0,207). A
noise sample is denoted as w(n)
=w(n)+jwi(n) where w(n) and w;(n) are
real-valued Gaussian random variables with

mean zero and variance o2

wi(n)~v'(0,0%). The channel gain is

denoted as h = h,+ jh;. The channel gain can
be assumed as a constant within each
spectrum sensing period and can be
written as

Le., wy(n) ,

y(n)=6x(n)+w(n) (2)
where @ =0 for #, and 6 = 1 for #.

4.1.1 Improved energy detection under
low SNR model:

Three signal models, S1, S2 and S3
which are given and can be considered in the
energy detection. For S1 and S2 signal
models, the distribution of A is modeled
exactly Under HO, the false-alarm
probability is with the upper incomplete
Gamma function. Under H1, the detection
probabilities are with the Marcum-Q
function and with the upper incomplete
Gamma function for S1 and S2,
respectively. However, none of  these
functions have closed-form = inverse
functions, and thus there is no closed-form
expression for the detection threshold A
when a false-alarm or detection probability
is given even with AWGN channel[9,11].
This problem becomes more complicated
when the fading effect .is considered.
Although there are rigorous expressions for
the average detection performance over
some particular fading channels in the
literature, such expressions may not help for
the parameter optimization (e.g., optimizing
detection threshold). Since S1 and S2 signal
models have different set of expressions,
results of one model cannot be derived from
those of the other model. Moreover, the
distribution of A cannot be modeled exactly
for S3[11,12].
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To solve all these problems, the
CLT approach can be used as a unified
approach of accurately approximating the
distribution of A in the three signal
models.The distribution of A can be
approximated as a normal distribution for
sufficiently large N as

2)7N(20v2v)2 'H,

w

J (t+27)] :HywitStors?

J it

“H, with S2
©)

the low-SNR assumption
(ie;70 1) the signal has little impact

onthe variance of the test statistic under H,,

as used in the Edell model, Berkeley model
and Torrieri model which are well-known
Gaussian approximations for the test statistic

under H,[12, 13]. Thus, (3) can be

accurately approximated for any of the three
signal models as

N (No’,Not).  :H,
N (No® (L+7),Ne*): H,

i

low (4)
where O = \/gO'W. The false alarm
probability Pf and the missed-detection

probability P ( Y ) can be evaluated as

1 A—-No?
P. == Erfc 5

And

1 A-No? (1+
P, (y) zl—E EI‘fC[ ( 7/)] (6)

N

respectively, where where

1 z
Q(z :—Erfc(—jand Erfc() is the
(2)=5Erfe| 5 ()
complementaryerror function defined as
A L :
Erfc(z)=—=| e." dt[4]. Since the
(2)=7=/, [4]
detection probability,
P, (7)=1-P(7), relates to the

cumulative distribution function (CDF)of
the test statistic.

The ROC curve, AUC, and the
total error rate are used as the performance
measures. The ROC curve is a measurement
for the sensitivity of a detector used in a
binary classifier system [12]. In signal-
detection theory, the ROC (or the
complementary ROC) curve is a graphical

plot of P, (7/)(0r P4 (7/))versus P; as

the discrimination threshold A varies. The
ROC curves of spectrum-sensing detectors
have highly non-linear behavior, and they
are, in general, convex[9,10,11]. In wireless

communications, P, (7)depends on the

received instantaneous. SNR, which is a
function of the mabile radio channel gain.
Therefore, the average detection probability
(or average missed-detection probability)
over fading channels is important for
plotting the ROC curve.

4.1.2 Logical Selective method based on
Fusion center

Performance of an energy detector
used for cooperative spectrum sensing is
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investigated. Single cooperative node,
multiple cooperative nodes and multi-hop
cooperative  Sensing networks  are
considered. Two fusion strategies, data
fusion and decision fusion, are analyzed. For
data fusion, upper bounds for average
detection probabilities are derived. For
decision fusion, the detection and false
alarm probabilities are derived under the
out-of generalized “k- -n” fusion rule at the
fusion center by considering errors in the
reporting channel[10,11]

CR User-1
CR User-2

CR User-3 DATA FUSION
—>
] CENTER

CR User-n

Fig:2 Data fusion center

In  decision  fusion,  each
cooperative node makes one-bit hard
decision on the primary user activity: 0’
and ‘1’ mean the absence and presence of
primary activities, respectively. Then, each
reporting channel is with a narrow
bandwidth. Capability of complex signal
processing is needed: at each cooperative
node. The fusion rule at the fusion center
can be OR, AND, or Majority rule, which
can be generalized as the “k-out-of-n” rule.
The decision device of the fusion center
with  n cooperative nodes can- be
implemented with the k-out-of-n rulein
which the fusion center decides the presence
of primary activity if there are k or more
cooperative nodes that individually decide
on the presence of primary activity[8,9].

When k = 1, k = n and, k=In/2| where
[.]is the ceiling function, the k-out-of-n rule

represents OR rule, AND rule and Majority

rule, respectively.It is assumed that the
decision device of the fusion center is
implemented with the k out- of-n rule (i.e.,
the fusion center decides the presence of
primary activity if there are k or more
cooperative nodes that individually decide
the presence of primary activity). When k =

1,k =nand Kk :fn/2—| , the k-out-of-n

rule- represents OR rule, AND rule and
Majority rule, respectively. In the following,
for simplicity of

presentation, P and Py are used to

represent false alarm and detection
probabilities, respectively, for a cooperative

node, and use P;and Py to represent false

alarm  and detection  probabilities,
respectively, in the fusion center.

4.1.3. Improved sub nyquist sampling
method for spectrum sensing

The received signal x(t) is assumed to
be an analog wideband sparse spectrum
signal, band limited to [0,Bmay]. Denote the
Fourier transform of x(t) by X(f). Depending
on the application, the entire frequency band
is segmented into L narrowband channels,
each of them with bandwidth B, such that
Bmax = L x B. It is assumed that the signal
bands are uncorrelated with each other. The
channels are indexed from 0 to L — 1. Those
spectral bands which contain part of the
signal spectrum are termed active channels,
and the remaining bands are called vacant
channels[11,12,14 ]. Denote the number of
such active channels by N. The indices of
the N active channels are collected into a
vector

b:[bl,bz,.....,bN] (7)

which is referred to as the active channel set.
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In the considered system, N and b are
unknown. However, we know the maximum
channel occupancy which is defined as

N
Q) = — 8
o = ®)

where Nmax > N is the maximum possible
number of occupied channels. Figure-1
depicts the spectrum of a multiband signal at
the sensing radio, which contains L = 32
channels, each with a bandwidth of B = 10
MHz. The signal is present in N = 6
channels, and the active channel set is b [8].

The problem is, given Bmax, B and Q max,
to find the presence or absence of the signal
in each spectral band or equivalently find
the active channel set, b, at a sub-Nyquist
sample rate.

Sample Correlation matrix
Mukicoset Sampler

)

N Ty Bl Uy e [ Subspace Analyss
: 1 \

Figure 3. Proposed wideband spectrum

sensing model.

The proposed model- for wideband
spectrum sensing is illustrated in Figure 3.
The analog received signal at the sensing
cognitive radio is sampled by the multicoset
sampler at a sample rate lower than the
Nyquist rate. The sampling reduction ratio is
affected by the channel occupancy and

multicoset sampling parameters. The outputs

of the multicoset sampler are partially
shifted using a multirate system, which
contains the interpolation, delaying and
down sampling stages. Next, the sample
correlation matrix is computed from the
finite number of obtained data. Finally, the
correlation matrix is investigated to discover
the position of the active channels by
subspace methods [9, 10, 12, 14].

5. RESULTS AND CONCLUSION
Improved CE-ED METHOD:

Fig 4:Probability of false Vs Probability of Detection

As the probabilty of false alarm increases
the probability of detection also increases

Fig 5:Probability of false Vs Probability of Miss
detection

As the probability of false alarm increases
the probability of miss detection decreases
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Fig 6:Probability of Detection Vs
SNR

As probability of detection increases SNR
also increases

LOGICAL SELECTIVE METHOD:

Complementary ROC of Cooperative sensing with AND rule under AWGN
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Fig 8: Performance of wideband
spectrum sensing under sub nyquist
sampling method

Several significant values correspond to
active channels are appeared where their
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locations specify the estimated active
channel set. The other channels are
interpreted as the vacant channels and can
be used by the cognitive system to
transmit. The results show that even in low
SNR with taking enough number of samples
a perfect detection is possible. In the
standardization  process of vehicular
networks, channel models are required to
evaluate and select the proposed physical
layer modulation and coding schemes.
Analytical and simulation” -results are
provided to support - the theoretical
formulations and derivations. The presented
results show that spectrum sensing and
access in vehicular communication can be
improved by modeling the wireless
environment precisely. In a cognitive radio
network (CRN), in-band spectrum sensing is
essential for the protection of legacy
spectrum users, with which the presence of
primary users (PUs) can be detected
promptly, allowing secondary users (SUs) to
vacate the channels immediately. For in-
band sensing, it is important to meet the
detectability requirements, such as the
maximum allowed latency of detection (e.g.,
2 seconds in IEEE 802.22) and the
probability of misdetection and false-alarm.
From the presented result it is clear that a
channel model composed of mixed
distributions is useful- for designing
vehicular  wireless.We  “studied  the
performance of cooperative . spectrum
sensing and signal detection base on-hard
decision combining technique in data fusion
centre compared with non-cooperative one.

In cooperative technique, OR and AND
rules are employed and evaluate the system
performance by using probability of
detection (Pd) and SNR as metric. The OR
rule decides H1 when at least one CR user
forward bit-1 while the AND rule decides

H1 when all CR users forward their bit-1 to
data fusion centre. The numerical results
show that cooperative technique has less
performance compared with non cooperative
one and employing OR rule can improve
probability of detection than AND rule and
non cooperative signal detection at different
SNR values. Cooperative technique is more
effective when received SNR in cognitive
radio users is. low due to fading and
shadowing. Non - cooperative technique
achieves the same - detection probability
value (optimal value) ~as cooperative
technique when received SNR is greater
than 10 dB, Furthermore, a minimum of 15
collaborated users relatively in. cognitive
radio system can achieve optimal value of
detection probability. However, it depends
on the threshold value used in signal
detection.

6. FUTURE WORK In future, we would
like to explore other types of feature
detection and evaluate their performance
comparatively with energy detection. In-
band sensing of wireless micro-phones
should be another subject of our future
work.
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