April 2016
VOLUME -1
ISSUE-4
Page:7899-06

International Journal of Engineering In Advanced Research Science and Technology
ISSN: 2278-256

BFC: HIGH-PERFORMANCE DISTRIBUTED BIG-FILE CLOUD
STORAGE BASED ON KEY-VALUE STORE

SK.Akbar®V.Rajashekar’BanavathuBalakrishna
1 HOD, Department of CSE Mandava Institute of Engineering Technology Vidya Nagar, Jaggayyapet. Krishna Dist,
Andhra Pradesh
?Assistant Professor, Department of CSE Mandava Institute of Engineering Technology Vidya Nagar, Jaggayyapet.
Krishna Dist, Andhra Pradesh
®(M-tech) Department of CSE Mandava Institute of Engineering Technology Vidya Nagar, Jaggayyapet. Krishna
Dist, Andhra Pradesh

Abstract: Nowadays, cloud based storage are growing and has become an “emerging trendin bigdata
storagefield.Manyproblemsarise while designing an efficient and low complicated storage engine for cloud-based
systems with some issues like ‘big filesprocessing, meta data, latency, parallel Input/Output, deduplication,
distributednature, highscalability. Key value stores has a vital role and showed many advantages when solving those
problems. This paper presents about Big File Cloud Storage(BFCS) with its modules and architecture to handle
most of problems in a,big file cloudstorage which his base don key value store. Here we are’ proposing less-
complicated, fixed meta data design, which allows fast as wellas highly-concurrent, distributed filelnput/Output, and
simple file and datade-duplication
methodforstaticdata. Thismethodcanbeusedtobuildadistributedstoragesystemthatcanaccommodatedata whose size is

uptoterabytes.

Keywords: Cloud Storage System, Key value, Big File, Distributed StorageSystem

1.Introduction

Now-a-days cloud storage system are being used
forstoringthe data in gigabytes and terabytes. Cloud
storage is usedforthe daily use, for backing-up data,
sharing file
totheircolleagues,onthesocialnetworkingsites. Theuser
ofthecloudbasedsystemcanuploadthedataonthesystem
andcanshareitwithothersandmakeitavailablefortheman
dlater can download it. The. load over the system
isveryheavy. Hence, to ensure a good quality of
service cloudusers, the system has to look over
various requirementanddifficult “problems: serving
services to the user withhighquality without any
bottleneck; efficiently storing,retrievingand-managing
the big data files; resumable andparalleldownload and
upload of data; the deduplication to betakencare of
for managing the storage capacity of
thesystem. Traditional file-systems had to face many
challengesforservicebuilderwhenmanagingahugenum
berofbig-file:How to scale system; How to do
distribution of data onalarge number of nodes; How
to do replication data forload-balancing and fault-
tolerance. The solution fortheseproblems s
Distributed File Systems and CloudStoragesusing
commonly is splitting big file to

multiplesmallerchunks, storing them on disks or
distributed nodes andthenmanaging them -using a
meta-data system. Storing ofthechunks and meta-data
related to it efficiently and
designingalightweightmeta-
datarelatedtoitaresignificantproblemsthat cloud
storage providers have toface.

Key value stores have various advantages for storing
dataindata-intensive operation. In recent years, key
valuestoreshave a very unpre-cedented growth in
every field. Theyhavelow latency with less response
time and high scalabilitywithsmall and medium key
value pair size. Current Kkeyvaluestores are not
designed for directly storing big-values, orbigfile in
our case. ~We rexecuted several experiments
inwhichwe put whole file-data to key value store, the
system didnothave good performance as usual for
many reasons: firstly,thelatency of put/get operation
for big-values is high, thusitaffects other parallel
operations of key value
storeserviceandmultipleconcurrentaccessestodifferent
value.And,when the value is big, then there is no
space to cacheobjectsin memory for fast access.
Finally, it is difficult toscale-outsystem when number
of users and data increase. Thisresearch is

April 2016
VOLUME -2
ISSUE-4
Page:7899-06

International Journal of Engineering In Advanced Research Science and Technology
ISSN: 2278-256

implemented to solve those
problemswhenstoringbig-valuesorbig-
fileusingkeyvaluestores.Ithasand gets many
advantages of key value store indatamanagement to
research called cloud-storage systemcalledBig File
Cloud Storage(BFCS).

2. Big File Cloud Storage (BFCS)Architecture

A. Overview of theArchitecture

BFCS System includes four layers:
ApplicationLayer,Logical Layer, File-Chunk Store
Layer and Key

BFCSS Web

Interfaces

1 T

BFCSs BFCSS API
Worlkers

‘ BFCSS Native Apps

.

File-Chunk

Storage Services

| 1
FEEEE

‘ Metadata Service

valuestoreLayer. Each 'layer of the architecture
contains severalco-ordinated components.
Application Layer consistsofapplication software on
desktop computers, mobiledevicesand web-interface,
that allows the user to upload,downloadtheir files.
This layer uses API contained in LogicalLayerand
uses several algorithms for downloading
anduploadingprocess which are described .in
subsections I1-F andll-G.Logical Layer consisted of
many services andworkerservices, |D-Generator
services and all logical API
forCloudStorageSystem.Thislayergivesthebusinesslog
icpartinBFCSS. Thevitalcomponentsofthislayerareupl
oadanddownload.Logical Layer stores and retrieves
data from File-ChunkStore Layer. File-Chunk Store
Layer is the
mostimportantlayerwhichhasresponsibilityforstoringa
ndcachingchunks.This layer manages information of

all chunks in thesystemincluding user details and file
metadata. In this,meta-
datadescribesafileandhowitisorganizedinchunks.File-
ChunkStore Layer also contains many distributed
back-endservices. Two important services of File-
Chunk StoreLayerare FileInformationService and
Chunk StorageService.

Figurel:ShowstheoverviewofBFCSSArchitecture

FilelnformationServicestoresinformationoffiles.Itisa
key value store mapping data from filelD
toFilelnformstructure. -Chunk Storage Service stores
data chunkswhichare created by splitting the original
files that useruploaded.Splitting and storing a large
file as number of chunksindistributed key value store
bring a lot of benefits. Firstly, itiseasier to store,
distribute chunks in key value
stores.Filechunkscanbestoredefficientlyinakeyvaluest
ore.ltisdifficult to do this with a large file directly in
localfilesystem.

B. FileDescription

Fileconsistsofoneormorechunkswithfixed-
size.Eachchunk has a unique integer Identity, and all
ofchunkgeneratedfromafilehaveacontiguousrangeofch
unk-id.This is a different point to many other Cloud
Service suchasDropBox[12] which uses SHA-2[16]
of chunk asID.

C. Storage of theChunks

The basic element in the defined cloud storage
systemischunk. A chunk is generated from a file.
When
theuseruploadsafile,itwillbesplitintoanumberofchunks
.Allchunks which are generated from a file except the
lastchunkhave the same size (the last chunk of a file
may have anequalor smaller size): After that, the ID
generator will generateidfor the first chunk with auto-
increment mechanism.Nextchunk that follows in the
chunks set is to -be -assigned withanlD and then
gradually-increase till the final chunk.AFilelnform
object is created with information such asfile-
id,sizeoffile,idoffirstchunk,numberofchunksandwillbe
storedtothedatabaseandthechunkswillbestoredinkeyva
luestoreasarecordwithkeyasidofchunkandvalueisdata
of chunk. Chunk storage is one of the
mostsignificanceof defines cloud storage. By using
chunks to represent
afile,wecaneasilybuildadistributedfilestoragesystemse
rvicewith replication, load balancing, fault-tolerant
andsupportingrecovery.

International Journal of Engineering In Advanced Research Science and Technology April 2016
ISSN: 2278-256

VOLUME -2
ISSUE-4
Page:7899-06

D. Metadata

Typically, in the cloud storage system such as
Dropbox[12],the size of meta-data will respectively
increase with
thesizeoforiginalfile,itcontainsalistofelements,eachele
mentcontainsinformationsuchaschunksize,hashvalueo
fchunk.Lengthofthelistisequaltothenumberofchunkfro
mfile.Soitbecomescomplicatedwhenthefilesizeisbig.B
FCSproposed a solution in which the size of meta-
dataisindependent of number of chunks with any size
of file,
bothaverysmallfileorahugefile. Thesolutionjuststoresth

input: filelD

I Client Get Filelnfo from Server I

!

| Client Prepare local File with Filelnfo.fileSize

v

Parallel download chunks from Filelnfo.startChunklD
and fill them to Prepared File

v

I Set completed status to download

v

End

eidoffirst chunk, and'the number of chunks which is
generatedbyoriginal file. Because the id of chunk is
increasinglyassignedfrom the first chunk, we can
easily calculate the ith chunkidby theformula:

Chunk_id[i]=fileInform.startChunk_id+i

Meta-data is mainly described in Filelnform
structureconsistof followingfields:

. File_Name - the name offile;

o file_id:-
uniqueidentificationoffileinthewholesystem;

e sha-
hashvaluebyusingSHAalgorithmoffiledata;

o reference file:- id of file that have previous
existedinSystem and have the same sha256 - we treat
these filesasone, reference_file is valid if it is greater
thanzero;

e start Chunkid:-
theidentificationofthefirstchunkoffile,thenextchunkwi
IIhaveidasstart Chunkid+1andsoon;

e num_Chunk:-thenumberofchunksofthefile;
o file_Size :- size of file inbytes;

o file_status:- the status of file, it has one in
fourvaluesnamely

UploadingFile - when chunk are uploading
toserver;CompletedFile - when all chunk are
uploaded to server butitis not check asconsistent;
CorruptedFile - when all chunk are uploaded to
server butitis not consistent afterchecking;

Calculate SHA of il contents

Client Ceates Basic fllnfo
+fleame
+SHAValue
HieSze

Send Basic llnfo to Z8F Cloud

Server generates new el
new startChunklD, create nen Fiehifa Create Flelfo with refFleD
and send packto Clent

Paralel upload chunks] e Completed Stakus o Fiehio

GoodCompleted - when all chunk are uploaded to

serverandconsistent checking completed with good
result. Byusingthis solution, we can create a
lightweight meta-datadesignwhen~ building the
defined cloudstorage.

E. Uploading and DeduplicationMechanism

Figure 2 describes an algorithm for uploading big

filetoBFCS.Datadeduplication can be defined in the
cloudstorageBFCS. There are many types and
methods ofdatadeduplication [3] which can work
both on client-sideorserver-side. We use a simple
method with SHA2hashfunction to detect duplicate
files in the system duringtheuploading offile.The
upload service on BFCS cloud storage system has
alittledifferent between mobile client and web
interface.

April 2016
VOLUME -2
ISSUE-4
Page:7899-06

International Journal of Engineering In Advanced Research Science and Technology
ISSN: 2278-256

TheclientcomputestheSHAhashvalueofdatacontentof
thisfileP.After that, the client creates a metadata of
file includingfilename, file size, SHA value. This
information will be senttoserver. At server-side, if
data deduplication is enabled,SHAvalue will be usedt
see associated file_id, if there is a file_id in the
system with

the SHA-value we call it Q, this means that file P
and file Q

are the same. So we simply refer file P to file Q by
assigning the id of file B to reference_file property of
fileP- a

property that describes that a file is referenced to
another file,thus the upload flow complete, there is no
more wasteful upload of file. In the case there is no
fileID associated with SHA-value of file P or data
deduplication is disabled, the system will create some
of new properties for the file information including
the id of file, the id of first chunk using id_Generator
and number of chunk 'calculated by file size and
chunk size. This process can be done in parallel to
maximize speed of operation. Every chunk will be
stored in the BFCS ' storage system as a key value
pair.

F. Downloading Mechanism

Figure 3 describes an algorithm for uploading big
file to BFCS. Firstly, the client selects the id of file
that will be downloaded to the server. If FilelInform
of the file_id exists, this information will be sent back
to the client. The client uses the Filelnform
information to schedule the download process. Every
downloaded chunk will be save directly to its position
in this file. When all chunks are fully downloaded
successful, the download process is completed

Figure 3: Download Mechanism:

3. Conclusion

BFCS, a simple meta-data ‘to create a high
performance Cloud Storage based on MYSQL key
value store. Every file in the system has a same size
of meta-data regardless of file-size. Every big-file
stored in BFCSS is split into multiple fixed-size
chunks (may except the last chunk of file). The
chunks of a file have a contiguous ID range, thus it is
easy to distribute data and scale-out storage system,
especially when using MYSQL. This research also
brings the advantages of key value store into big-file
data store which is not default

supported for big-value. The data deduplication
method of BFCSS uses SHA-2 hash function and a
key value store to fast detect data-duplication on
server-side. It is useful to save storage space and
network bandwidth when many users upload the

same static data.

References

[1] ThanhTrung Nguyen, Tin Khac Vu, Minh Hieu
Nguyen, Ha Noi, Viet Nam, “BFCSS: High-
Performance

Distributed Big-File Cloud Storage Based On Key
value Store”, June 1-3 2015, IEEE SNPD 2015, 978-
1-4799-8676-7/15(Base Paper).

[2] ~ T.T.Nguyen and M.H.Nguyen , “Design
Sequential - Chunk identity with Light weight
Metadata for Big File

Cloud Storage”, IJCSNS International Journal of
Computer Science and Network Security, VOL.15
No.9,

September 2015.

[3] Jin Li, Xiaofeng Chen,Xinyi Huang, Shaochua
Tang and Yang Xiang, Mohammad Mehedi Hassan,
AbdulhameedAlelaiwi, “Secure Distributed
Deduplication Systems with Improved Reliability”,
2015,

10.1109/TC.2015.2401017, IEEE Transactions on
Computers.

[4] ThanhTrung Nguyen - Minh Hieu Nguyen,
“Zing Database: High-Performance Key value Store
For

Large-Scale Storage Service”, 17 August 2014,
Springer - Vietham J ComputSci (2015), DOI
10.1007/s40595-014-0027-4.

[S] Joshi Vinay Kumar, V Ravi Shankar, “De-
duplication and Encryption in Cloud Storage”, May
2015,

International Journal of Innovative Research in
Science, Engineering and Technology, Vol. 4,
Special Issue 6.

[6] Leeba Varghese , Suranya G, “Test Pattern
Generation Using LFSR With- Reseeding Scheme
For BIST
Designs”, December 2014, International Journal of
Advanced Research in Electrical, Electronics and
Instrumentation Engineering, Vol. 3, Special Issue 5.

[7] ChristianForfang, = “Evaluation of High
Performance Key wvalue Stores”, June 2014,
Norwegian University of

Science and Technology.

[8] NesrineKaaniche, Maryline Laurent, “A Secure
Client Side Deduplication Scheme in Cloud Storage

Environments”, 2013, Institut Mines-Telecom,
Telecom SudParis, UMR CNRS 5157.

[9] |IdilioDrago, Enrico Bocchi, Marco Mellia,
Herman Slatman, AikoPras, “Benchmarking
Personal Cloud

International Journal of Engineering In Advanced Research Science and Technology | April 2016

ISSN: 2278-256 VOLUME -2
ISSUE-4

Page:7899-06

Storage”, October 23-25, 2013, ACM, 978-1-4503-
1953-9/13/10.

[10] MihirBellare, SriramKeelveedhi, Thomas
Ristenpart, “DupLESS: Server-Aided Encryption for

Deduplicated Storage”, 2013, USENIX Security
Symposium.

[11] luon-Chang Lin and Po-ChingChien, “Data
Deduplication Scheme for Cloud Storage”, 2012,

International Journal of Computer, Consumer
andControl (1J3C), Vol. 1, No.2.

[12] IdilioDrago, Marco Mellia, Maurizio M.
Munafd, Anna Sperotto, RaminSadre, AikoPras,
“Inside Dropbox:

Understanding Personal Cloud Storage Services”,
November 14-16, 2012, ACM, 978-1-4503-XXXX-
X/12/11.

[13] Russell Sears, Raghu Ramakrishnan, “bLSM:
A General Purpose Log OStructured Merge Tree”,
May

20-24, 2012, ACM, 978-1-4503-1247-9/12/05.

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat,
Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar

Chandra, Andrew Fikes, Robert E. Gruber,
“Bigtable: A Distributed Storage System for
Structured Data”,

Google, Inc.

[15] DavidKarger, Eric Lehma, Tom Leighton,
Matthew Levine, Daniel Lewin, RinaPanigrahy
“Consistent

Hashing and Random Trees: Distributed Caching
Protocols for Relieving Hot Spots on the World Wide

Web”.

[16] “Secure Hash Standard”,Computer Systems
Laboratory National Institute of Standards and

Technology Gaithersburg, MD 2089, Issued April
17, 1995.

[17] MartinPlacek, RajkumarBuyya, “A Taxonomy
of Distributed Storage Systems”.

[18] DhrubaBorthakur, “HDFS " Architecture
Guide”, Copyright © 2008 The Apache. Software
Foundation.

[19] SanjayGhemawat, Howard Gobioff, and Shun-
TakLeung, “The Google File System”, October 19—
22,

2003, ACM, 1-58113-757-5/03/0010.

