
1
International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
April 2016
VOLUME -
ISSUE-4
Page:7899-06

BFC: HIGH-PERFORMANCE DISTRIBUTED BIG-FILE CLOUD

STORAGE BASED ON KEY-VALUE STORE

1SK.Akbar2V.Rajashekar3BanavathuBalakrishna
1 HOD, Department of CSE Mandava Institute of Engineering Technology Vidya Nagar, Jaggayyapet. Krishna Dist,

Andhra Pradesh
2Assistant Professor, Department of CSE Mandava Institute of Engineering Technology Vidya Nagar, Jaggayyapet.

Krishna Dist, Andhra Pradesh
3(M-tech) Department of CSE Mandava Institute of Engineering Technology Vidya Nagar, Jaggayyapet. Krishna

Dist, Andhra Pradesh

Abstract: Nowadays, cloud based storage are growing and has become an emerging trendin bigdata

storagefield.Manyproblemsarise while designing an efficient and low complicated storage engine for cloud-based

systems with some issues like big filesprocessing, meta data, latency, parallel Input/Output, deduplication,

distributednature, highscalability. Key value stores has a vital role and showed many advantages when solving those

problems. This paper presents about Big File Cloud Storage(BFCS) with its modules and architecture to handle

most of problems in a big file cloudstorage which his base don key value store. Here we are proposing less-

complicated, fixed meta data design, which allows fast as wellas highly-concurrent, distributed fileInput/Output, and

simple file and datade-duplication

methodforstaticdata.Thismethodcanbeusedtobuildadistributedstoragesystemthatcanaccommodatedata whose size is
uptoterabytes.

Keywords: Cloud Storage System, Key value, Big File, Distributed StorageSystem

1.Introduction

Now-a-days cloud storage system are being used

forstoringthe data in gigabytes and terabytes. Cloud

storage is usedforthe daily use, for backing-up data,

sharing file
totheircolleagues,onthesocialnetworkingsites.Theuser

ofthecloudbasedsystemcanuploadthedataonthesystem

andcanshareitwithothersandmakeitavailablefortheman

dlater can download it. The load over the system

isveryheavy. Hence, to ensure a good quality of

service cloudusers, the system has to look over

various requirementanddifficult problems: serving

services to the user withhighquality without any

bottleneck; efficiently storing,retrievingand managing

the big data files; resumable andparalleldownload and

upload of data; the deduplication to betakencare of

for managing the storage capacity of
thesystem.Traditional file-systems had to face many

challengesforservicebuilderwhenmanagingahugenum

berofbig-file:How to scale system; How to do

distribution of data onalarge number of nodes; How

to do replication data forload-balancing and fault-

tolerance. The solution fortheseproblems is

Distributed File Systems and CloudStoragesusing

commonly is splitting big file to

multiplesmallerchunks, storing them on disks or

distributed nodes andthenmanaging them using a

meta-data system. Storing ofthechunks and meta-data

related to it efficiently and

designingalightweightmeta-

datarelatedtoitaresignificantproblemsthat cloud
storage providers have toface.

Key value stores have various advantages for storing

dataindata-intensive operation. In recent years, key

valuestoreshave a very unpre-cedented growth in

every field. Theyhavelow latency with less response

time and high scalabilitywithsmall and medium key

value pair size. Current keyvaluestores are not

designed for directly storing big-values, orbigfile in

our case. We executed several experiments

inwhichwe put whole file-data to key value store, the

system didnothave good performance as usual for

many reasons: firstly,thelatency of put/get operation
for big-values is high, thusitaffects other parallel

operations of key value

storeserviceandmultipleconcurrentaccessestodifferent

value.And,when the value is big, then there is no

space to cacheobjectsin memory for fast access.

Finally, it is difficult toscale-outsystem when number

of users and data increase. Thisresearch is

International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
April 2016
VOLUME -2
ISSUE-4
Page:7899-06

implemented to solve those

problemswhenstoringbig-valuesorbig-

fileusingkeyvaluestores.Ithasand gets many

advantages of key value store indatamanagement to

research called cloud-storage systemcalledBig File

Cloud Storage(BFCS).

2. Big File Cloud Storage (BFCS)Architecture

A. Overview of theArchitecture

BFCS System includes four layers:

ApplicationLayer,Logical Layer, File-Chunk Store

Layer and Key

valuestoreLayer. Each layer of the architecture

contains severalco-ordinated components.

Application Layer consistsofapplication software on

desktop computers, mobiledevicesand web-interface,
that allows the user to upload,downloadtheir files.

This layer uses API contained in LogicalLayerand

uses several algorithms for downloading

anduploadingprocess which are described in

subsections II-F andII-G.Logical Layer consisted of

many services andworkerservices, ID-Generator

services and all logical API

forCloudStorageSystem.Thislayergivesthebusinesslog

icpartinBFCSS.Thevitalcomponentsofthislayerareupl

oadanddownload.Logical Layer stores and retrieves

data from File-ChunkStore Layer. File-Chunk Store

Layer is the
mostimportantlayerwhichhasresponsibilityforstoringa

ndcachingchunks.This layer manages information of

all chunks in thesystemincluding user details and file

metadata. In this,meta-

datadescribesafileandhowitisorganizedinchunks.File-

ChunkStore Layer also contains many distributed

back-endservices. Two important services of File-

Chunk StoreLayerare FileInformationService and
Chunk StorageService.

Figure1:ShowstheoverviewofBFCSSArchitecture

FileInformationServicestoresinformationoffiles.Itisa

key value store mapping data from fileID

toFileInformstructure. Chunk Storage Service stores

data chunkswhichare created by splitting the original

files that useruploaded.Splitting and storing a large

file as number of chunksindistributed key value store

bring a lot of benefits. Firstly, itiseasier to store,

distribute chunks in key value
stores.Filechunkscanbestoredefficientlyinakeyvaluest

ore.Itisdifficult to do this with a large file directly in

localfilesystem.

B. FileDescription

Fileconsistsofoneormorechunkswithfixed-

size.Eachchunk has a unique integer Identity, and all

ofchunkgeneratedfromafilehaveacontiguousrangeofch

unk-id.This is a different point to many other Cloud

Service suchasDropBox[12] which uses SHA-2[16]
of chunk asID.

C. Storage of theChunks

The basic element in the defined cloud storage

systemischunk. A chunk is generated from a file.

When

theuseruploadsafile,itwillbesplitintoanumberofchunks

.Allchunks which are generated from a file except the
lastchunkhave the same size (the last chunk of a file

may have anequalor smaller size). After that, the ID

generator will generateidfor the first chunk with auto-

increment mechanism.Nextchunk that follows in the

chunks set is to be assigned withanID and then

gradually increase till the final chunk.AFileInform

object is created with information such asfile-

id,sizeoffile,idoffirstchunk,numberofchunksandwillbe

storedtothedatabaseandthechunkswillbestoredinkeyva

luestoreasarecordwithkeyasidofchunkandvalueisdata

of chunk. Chunk storage is one of the
mostsignificanceof defines cloud storage. By using

chunks to represent

afile,wecaneasilybuildadistributedfilestoragesystemse

rvicewith replication, load balancing, fault-tolerant

andsupportingrecovery.

International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
April 2016
VOLUME -2
ISSUE-4
Page:7899-06

D. Metadata

Typically, in the cloud storage system such as

Dropbox[12],the size of meta-data will respectively
increase with

thesizeoforiginalfile,itcontainsalistofelements,eachele

mentcontainsinformationsuchaschunksize,hashvalueo

fchunk.Lengthofthelistisequaltothenumberofchunkfro

mfile.Soitbecomescomplicatedwhenthefilesizeisbig.B

FCSproposed a solution in which the size of meta-

dataisindependent of number of chunks with any size

of file,

bothaverysmallfileorahugefile.Thesolutionjuststoresth

eidoffirst chunk, and the number of chunks which is

generatedbyoriginal file. Because the id of chunk is

increasinglyassignedfrom the first chunk, we can

easily calculate the ith chunkidby theformula:

Chunk_id[i]=fileInform.startChunk_id+i

Meta-data is mainly described in FileInform
structureconsistof followingfields:

 File_Name - the name offile;

 file_id:-
uniqueidentificationoffileinthewholesystem;

 sha:-

hashvaluebyusingSHAalgorithmoffiledata;

 reference_file:- id of file that have previous
existedinSystem and have the same sha256 - we treat

these filesasone, reference_file is valid if it is greater

thanzero;

 start_Chunkid:-

theidentificationofthefirstchunkoffile,thenextchunkwi
llhaveidasstart_Chunkid+1andsoon;

 num_Chunk:-thenumberofchunksofthefile;

 file_Size :- size of file inbytes;

 file_status:- the status of file, it has one in
fourvaluesnamely

UploadingFile - when chunk are uploading

toserver;CompletedFile - when all chunk are

uploaded to server butitis not check asconsistent;

CorruptedFile - when all chunk are uploaded to

server butitis not consistent afterchecking;

GoodCompleted - when all chunk are uploaded to

serverandconsistent checking completed with good

result. Byusingthis solution, we can create a

lightweight meta-datadesignwhen building the

defined cloudstorage.

E. Uploading and DeduplicationMechanism

Figure 2 describes an algorithm for uploading big

filetoBFCS.Datadeduplication can be defined in the

cloudstorageBFCS. There are many types and
methods ofdatadeduplication [3] which can work

both on client-sideorserver-side. We use a simple

method with SHA2hashfunction to detect duplicate

files in the system duringtheuploading offile.The

upload service on BFCS cloud storage system has

alittledifferent between mobile client and web

interface.

International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
April 2016
VOLUME -2
ISSUE-4
Page:7899-06

TheclientcomputestheSHAhashvalueofdatacontentof

thisfileP.After that, the client creates a metadata of

file includingfilename, file size, SHA value. This

information will be senttoserver. At server-side, if

data deduplication is enabled,SHAvalue will be usedt
see associated file_id, if there is a file_id in the

system with

the SHA-value we call it Q, this means that file P

and file Q

are the same. So we simply refer file P to file Q by

assigning the id of file B to reference_file property of

file P - a

property that describes that a file is referenced to

another file,thus the upload flow complete, there is no

more wasteful upload of file. In the case there is no

fileID associated with SHA-value of file P or data
deduplication is disabled, the system will create some

of new properties for the file information including

the id of file, the id of first chunk using id_Generator

and number of chunk calculated by file size and

chunk size. This process can be done in parallel to

maximize speed of operation. Every chunk will be

stored in the BFCS storage system as a key value

pair.

F. Downloading Mechanism

Figure 3 describes an algorithm for uploading big

file to BFCS. Firstly, the client selects the id of file

that will be downloaded to the server. If FileInform
of the file_id exists, this information will be sent back

to the client. The client uses the FileInform

information to schedule the download process. Every

downloaded chunk will be save directly to its position

in this file. When all chunks are fully downloaded

successful, the download process is completed

Figure 3: Download Mechanism:

3. Conclusion

BFCS, a simple meta-data to create a high

performance Cloud Storage based on MYSQL key

value store. Every file in the system has a same size
of meta-data regardless of file-size. Every big-file

stored in BFCSS is split into multiple fixed-size

chunks (may except the last chunk of file). The

chunks of a file have a contiguous ID range, thus it is

easy to distribute data and scale-out storage system,

especially when using MYSQL. This research also

brings the advantages of key value store into big-file

data store which is not default

supported for big-value. The data deduplication

method of BFCSS uses SHA-2 hash function and a

key value store to fast detect data-duplication on
server-side. It is useful to save storage space and

network bandwidth when many users upload the

same static data.

References

[1] ThanhTrung Nguyen, Tin Khac Vu, Minh Hieu

Nguyen, Ha Noi, Viet Nam, “BFCSS: High-
Performance

Distributed Big-File Cloud Storage Based On Key

value Store”, June 1-3 2015, IEEE SNPD 2015, 978-

1-4799-8676-7/15(Base Paper).

[2] T.T.Nguyen and M.H.Nguyen , “Design

Sequential Chunk identity with Light weight

Metadata for Big File

Cloud Storage”, IJCSNS International Journal of

Computer Science and Network Security, VOL.15

No.9,

September 2015.
[3] Jin Li, Xiaofeng Chen,Xinyi Huang, Shaohua

Tang and Yang Xiang, Mohammad Mehedi Hassan,

AbdulhameedAlelaiwi, “Secure Distributed

Deduplication Systems with Improved Reliability”,

2015,

10.1109/TC.2015.2401017, IEEE Transactions on

Computers.

[4] ThanhTrung Nguyen · Minh Hieu Nguyen,

“Zing Database: High-Performance Key value Store

For

Large-Scale Storage Service”, 17 August 2014,

Springer - Vietnam J ComputSci (2015), DOI
10.1007/s40595-014-0027-4.

[5] Joshi Vinay Kumar, V Ravi Shankar, “De-

duplication and Encryption in Cloud Storage”, May

2015,

International Journal of Innovative Research in

Science, Engineering and Technology, Vol. 4,

Special Issue 6.

[6] Leeba Varghese , Suranya G, “Test Pattern

Generation Using LFSR With Reseeding Scheme

For BIST

Designs”, December 2014, International Journal of
Advanced Research in Electrical, Electronics and

Instrumentation Engineering, Vol. 3, Special Issue 5.

[7] ChristianForfang, “Evaluation of High

Performance Key value Stores”, June 2014,

Norwegian University of

Science and Technology.

[8] NesrineKaaniche, Maryline Laurent, “A Secure

Client Side Deduplication Scheme in Cloud Storage

Environments”, 2013, Institut Mines-Telecom,

Telecom SudParis, UMR CNRS 5157.

[9] IdilioDrago, Enrico Bocchi, Marco Mellia,
Herman Slatman, AikoPras, “Benchmarking

Personal Cloud

International Journal of Engineering In Advanced Research Science and Technology

ISSN: 2278-256
April 2016
VOLUME -2
ISSUE-4
Page:7899-06

Storage”, October 23–25, 2013, ACM, 978-1-4503-

1953-9/13/10.

[10] MihirBellare, SriramKeelveedhi, Thomas

Ristenpart, “DupLESS: Server-Aided Encryption for

Deduplicated Storage”, 2013, USENIX Security

Symposium.
[11] Iuon-Chang Lin and Po-ChingChien, “Data

Deduplication Scheme for Cloud Storage”, 2012,

International Journal of Computer, Consumer

andControl (IJ3C), Vol. 1, No.2.

[12] IdilioDrago, Marco Mellia, Maurizio M.

Munafò, Anna Sperotto, RaminSadre, AikoPras,

“Inside Dropbox:

Understanding Personal Cloud Storage Services”,

November 14–16, 2012, ACM, 978-1-4503-XXXX-

X/12/11.

[13] Russell Sears, Raghu Ramakrishnan, “bLSM:
A General Purpose Log 0Structured Merge Tree”,

May

20–24, 2012, ACM, 978-1-4503-1247-9/12/05.

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat,

Wilson C. Hsieh, Deborah A. Wallach, Mike

Burrows, Tushar

Chandra, Andrew Fikes, Robert E. Gruber,

“Bigtable: A Distributed Storage System for

Structured Data”,

Google, Inc.

[15] DavidKarger, Eric Lehma, Tom Leighton,

Matthew Levine, Daniel Lewin, RinaPanigrahy
“Consistent

Hashing and Random Trees: Distributed Caching

Protocols for Relieving Hot Spots on the World Wide

Web”.

[16] “Secure Hash Standard”,Computer Systems

Laboratory National Institute of Standards and

Technology Gaithersburg, MD 2089, Issued April

17, 1995.

[17] MartinPlacek, RajkumarBuyya, “A Taxonomy

of Distributed Storage Systems”.

[18] DhrubaBorthakur, “HDFS Architecture
Guide”, Copyright © 2008 The Apache Software

Foundation.

[19] SanjayGhemawat, Howard Gobioff, and Shun-

TakLeung, “The Google File System”, October 19–

22,

2003, ACM, 1-58113-757-5/03/0010.

