
International Journal of Engineering in Advanced Research

 Science and Technology

VOLUME-4
ISSUE-12

International Journal of Engineering in Advanced Research Science and Technology

Copyright @ 2015 IJEARST. All rights reserved. Page No: 85

AN ENHANCED AND LOW POWER DOUBLE PRECISION

FLOATING POINT MULTIPLIER DESIGN
1
 K.RAVI VARMA,

2
 M.SANDYA

1
 M.Tech, Dept of ECE, Andhra Loyola Institute of Engineering &Technology Vijayawada, AP ,India

2
 Assistant Professor in ECE Andhra Loyola Institute of Engineering &Technology Vijayawada, AP,India

Abstract: ABSTRACT: The main objective of this project is to design an efficient IEEE-754

floating point multiplier .This project focuses on double precision normalized binary floating

point multiplication in IEEE754 format. The proposed design is compliant with IEEE-754

format and handles over flow, under flow, rounding and various exception conditions.

FLOATING-POINT arithmetic provides a wide dynamic range, freeing special purpose

processor designers from the scaling and overflow/underflow concerns that arise with fixed-

point arithmetic. Further this project can be enhanced by replacing the general multiplier

architecture with modified booth multiplication. This modification yields reduction of partial

products to half. Partial products reduction changes system overall performance in an

efficient manner. Xilinx tool is used to perform this task with the help of VHDL language

KEYWORDS: Floating point multiplier, double precision, underflow, Modified booth,

rounding, IEEE 754, VHDL, Xilinx.

--

I. INTRODUCTION:

The real numbers represented in binary

format are known as floating point

numbers. Based on IEEE-754 standard,

floating point formats are classified into

binary and decimal interchange formats.

Floating point multipliers are very

important in DSP applications. This paper

focuses on double precision normalized

binary interchange format. Floating point

numbers are one possible way of

representing real numbers in binary

format; the IEEE 754 [3] standard presents

two different floating point formats,

Binary interchange format and Decimal

interchange format. Multiplying floating

point numbers is a critical requirement for

DSP applications involving large dynamic

range. This paper focuses on double

precision floating point binary interchange

format. Figure 1 shows the IEEE 754

double precision floating point binary

format representation; it consists of a one

bit sign (S), an eleven bits exponent (E),

and a fifty two bits fraction (M or

Mantissa). An extra bit is added to the

fraction to form what is called the

significand1. If the exponent is greater

International Journal of Engineering in Advanced Research

 Science and Technology

VOLUME-4
ISSUE-12

International Journal of Engineering in Advanced Research Science and Technology

Copyright @ 2015 IJEARST. All rights reserved. Page No: 86

than 0 and smaller than 2047, and there is

1 in the MSB of the significand then the

number is said to be a normalized number,

Significand is the mantissa with an extra

MSB bit. It I shows the IEEE- 754 double

precision binary format representation.

Sign (S) is represented with one bit,

exponent (E) and fraction (M or Mantissa)

are represented with eleven and fifty two

bits respectively. For a number is said to

be a normalized number, it must consist of

'one' in the MSB of the significand and

exponent is greater than zero and smaller

than 1023. The real number is represented

by equations (I) & (2).

Z = (-I
S
)* 2

(E - Ria.l)
 * (1. M) ______(1)

Value = (-ISign bit) * 2 (Exponent -1023)

* (I.Mantissa) _____(2)

Multiplying two numbers in floating point

format is done by 1- calculating the sign

by XORing the sign of the two numbers,

2- adding the exponent of the two numbers

then subtracting the bias from their result,

and 3- multiplying the significand of the

two numbers. In order to represent the

multiplication result as a normalized

number there should be 1 in the MSB of

the result (leading one).

GENERAL MULTIPLICATION:

MULTIPLICATION is a complex

arithmetic operation, which is reflected in

its relatively high signal propagation

delay, high power dissipation, and large

area requirement. When choosing a

multiplier for a digital system, the bit

width of the multiplier is required to be at

least as wide as the largest operand of the

applications that are to be executed on that

digital system. The bit width of the

multiplier is, therefore, often much larger

than the data represented inside the

operands, which leads to unnecessarily

high power dissipation and unnecessary

long delay. This resource waste could

partially be remedied by having several

multipliers, each with a specific bit width,

and use the particular multiplier with the

smallest bit width that is large enough to

accommodate the current multiplication.

Such a scheme would assure that a

multiplication would be computed on a

multiplier that has been optimized in terms

of power and delay for that specific bit

width. However, using several multipliers

with different bit widths would not be an

efficient solution, mainly because of the

huge area overhead.1 There have been

several studies on operand bit widths of

International Journal of Engineering in Advanced Research

 Science and Technology

VOLUME-4
ISSUE-12

International Journal of Engineering in Advanced Research Science and Technology

Copyright @ 2015 IJEARST. All rights reserved. Page No: 87

integer applications and it has been shown

that for the SPECint95 benchmarks more

than 50% of the instructions are

instructions where both operands are less

than or equal to 16 bits [1] (henceforth

called narrow-width operations). This

property has been explored to save power,

through operand guarding [1]–[3]. In

operand guarding the most significant bits

of the operands are not switched, thus

power is saved in the arithmetic unit when

multiple narrow-width operations are

computed consecutively. Brooks et al. [1]

showed that power dissipation can be

reduced by gating of the upper part of

narrow-width operands. For the

SPECint95 and Media Bench benchmarks,

the power reduction of an operand-guarded

integer unit was 54% and 58%,

respectively, which accounts for a total

power reduction of 5–6% for an entire data

path.

II. FLOATING POINT

MULTIPLICATION

ALGORITHM

As stated in the introduction, normalized

floating point

numbers have the form of Z = (-1S) * 2 (E

- Bias) * (1.M). To

Multiply two floating point numbers the

following is done:

1. Obtaining the sign; i.e. Sa xor Sb

2. Adding the exponents; i.e. (E1 + E2 –

Bias)

3. Multiplying the significand; i.e.

(1.M1*1.M2)

4. Placing the decimal point in the

significant result

5. Normalizing the result; i.e. obtaining 1

at the MSB of the

 Results significand

6. Rounding the result to fit in the

available bits

7. Checking for underflow/overflow

occurrence

Rounding and Exceptions

The IEEE standard specifies four rounding

modes round to nearest, round to zero,

round to positive infinity, and round to

negative infinity. Table 1 show the

rounding modes selected for various bit

combinations of rmode. Based on the

rounding changes to the mantissa

corresponding changes has to be made in

the exponent part also.

Modified Booth Algorithm

Booth multiplication algorithm consists of

three major steps as shown in the structure

of booth algorithm figure that includes

generation of partial product called as

recoding, reducing the partial product in

International Journal of Engineering in Advanced Research

 Science and Technology

VOLUME-4
ISSUE-12

International Journal of Engineering in Advanced Research Science and Technology

Copyright @ 2015 IJEARST. All rights reserved. Page No: 88

two rows, and addition that gives final

product.

For a better understanding of modified

booth algorithm & for multiplication, we

must know about each block of booth

algorithm for multiplication process.

Modified Booth Algorithm Encoder

This modified booth multiplier is used to

perform high-speed multiplications using

modified booth algorithm. This modified

booth multiplier’s computation time and

the logarithm of the word length of

operands are proportional to each other.

We can reduce half the number of partial

product. Radix-4 booth algorithm used

here increases the speed of multiplier and

reduces the area of multiplier circuit. In

this algorithm, every second column is

taken and multiplied by 0 or +1 or +2 or -1

or -2 instead of multiplying with 0 or 1

after shifting and adding of every column

of the booth multiplier. Thus, half of the

partial product can be reduced using this

booth algorithm. Based on the multiplier

bits, the process of encoding the

multiplicand is performed by radix-4 booth

encoder.

The overlapping is used for comparing

three bits at a time. This grouping is

started from least significant bit (LSB), in

which only two bits of the booth multiplier

are used by the first block and a zero is

assumed as third bit as shown in the figure.

The figure shows the functional operation

of the radix-4 booth encoder that consists

of eight different types of states. The

outcomes or multiplication of multiplicand

with 0, -1, and -2 are consecutively

obtained during these eight states

The steps given below represent the radix-

4 booth algorithm:

 Extend the sign bit 1 position if

necessary to ensure that n is even.

 Append a 0 to the right of the least

significant bit of the booth

multiplier.

According to the value of each vector,

each partial product will be 0, +y, -y, +2y

or -2y.

Modified booth multiplier’s (Z) digits can

be defined with the following equation:

Zj = q2j + q2j-1 -2q2j+1 with q-1 = 0

http://www.efxkits.us/electrical-engineering-projects-for-final-year-beng-and-meng-honours/

International Journal of Engineering in Advanced Research

 Science and Technology

VOLUME-4
ISSUE-12

International Journal of Engineering in Advanced Research Science and Technology

Copyright @ 2015 IJEARST. All rights reserved. Page No: 89

The figure shows the modified booth

algorithm encoder circuit. Now, the product of

any digit of Z with multiplicand Y may be -2y,

-y, 0, y, 2y.

Booth Recoding Table for Radix-4

Booth’s Encoder

But, by performing left shift operation at

partial products generation stage, 2y may

be generated. By taking 1′s complement to

this 2y, negation is done, and then one is

added in appropriate 4-2 compressor. One

booth encoder shown in the figure

generates three output signals by taking

three consecutive bit inputs so as to

represent all five possibilities -2X, -X, 0,

X, 2X.

a) Partial Product Generator

Partial Product Generator

If we take the partial product as -2y, -y, 0,

y, 2y then, we have to modify the general

partial product generator. Now, every

partial product point consists of two inputs

(consecutive bits) from multiplicand and,

based on the requirement, the output will

be generated and its complements also

generated in case if required. The figure

shows the partial product generator circuit.

The 2’s complement is taken for negative

values of y. There are different types of

adders such as conventional adders, ripple-

carry adders, carry-look-ahead adders, and

carry select adders. The carry select adders

(CSLA) and carry-look-ahead adders are

considered as fastest adders and are

frequently used. The multiplication of y is

done by after performing shift operation

on y – that is – y is shifted to the left by

one bit.

http://www.efxkits.us/wp-content/uploads/2014/12/Booths-Encoder.j
http://www.efxkits.us/wp-content/uploads/2014/12/Partial-Product-Generator.j

International Journal of Engineering in Advanced Research

 Science and Technology

VOLUME-4
ISSUE-12

International Journal of Engineering in Advanced Research Science and Technology

Copyright @ 2015 IJEARST. All rights reserved. Page No: 90

III. RADIX-8 MODIFIED

BOOTH ALGORITHM:

Radix-8 recoding applies the same

algorithm as radix-4, but now we take

quartets of bits instead of triplets. Each

quartet is codified as asigned-digit using

the table

Here we have an odd multiple of the

multiplicand, 3Y, which is not

immediately available. To: generate it we

need to perform this previous

add:2Y+Y=3Y. But we are designing a

multiplier for specific purpose and thereby

the multiplicand belongs to a previously

known set of numbers which are stored in

a memory chip. We have tried to take

advantage of this fact, to ease the

bottleneck of the radix-8 architecture, that

is, the generation of 3Y. In this manner we

try to attain a better overall multiplication

time, or at least comparable to the time we

could obtain using radix-4 architecture

(with the additional advantage of using a

less number of transistors). To generate 3Y

with 21-bit words we only have to add

2Y+Y, that is, to add the number with the

same number shifted one position to the

left.

Radix-8 Booth recoding applies the same

algorithm as that of Radix-4, but now we

take quartets of bits instead of triplets.

Each quartet is codified as a signed digit

using Table II. Radix-8 algorithm reduces

the number of partial products to n/3,

where n is the number of multiplier bits.

Thus it allows a time gain in the partial

products summation

IV. RESULT:

Power analysis of existing code:

International Journal of Engineering in Advanced Research

 Science and Technology

VOLUME-4
ISSUE-12

International Journal of Engineering in Advanced Research Science and Technology

Copyright @ 2015 IJEARST. All rights reserved. Page No: 91

Power analysis of enhanced code:

Timing Summary of existing code:

Speed Grade: -3

 Minimum period: 0.766ns (Maximum

Frequency: 1306.336MHz)

 Minimum input arrival time before

clock: 0.695ns

 Maximum output required time after

clock: 1.935ns

 Maximum combinational path delay:

10.564ns

Timing Summary of enhanced code:

Speed Grade: -3

 Minimum period: 0.766ns (Maximum

Frequency: 1306.336MHz)

 Minimum input arrival time before

clock: 0.695ns

 Maximum output required time after

clock: 1.935ns

 Maximum combinational path delay:

10.560ns

V. CONCLUSION:

Finally, this project is implemented in an

efficient manner with floating point and

radix8 modified booth encoding algorithm

for multipurpose applications. This

concept is having the capability of

handling the overflow, underflow cases,

and this multiplier support truncation

rounding mode was implemented. It has

been performed the design and

implementation of a 32 bit radix-8 booth

International Journal of Engineering in Advanced Research

 Science and Technology

VOLUME-4
ISSUE-12

International Journal of Engineering in Advanced Research Science and Technology

Copyright @ 2015 IJEARST. All rights reserved. Page No: 92

multiplier. It has been proved that it can be

useful to apply a radix-8 architecture in

high speed multipliers because of the gain

in time obtained due to reduction of partial

products to n/3.

VI. REFERENCES:

[1] M.Al-Ashrafy, A.Salem and

W.Anis,“An Efficient Implementation of

Floating Point Multiplier ” Electronics

Communications and Photonics

Conference(SIECPC) 2011 Saudi

International, pp.1- 5,2011.

[2] F.de Dinechin and B.Pasca. Large

multipliers with fewer DSP blocks.In Field

Pro- grammable Logic and Applications.

IEEE, Aug. 2009. [3] IEEE 754-2008,

IEEE Standard for Floating-Point ic,

2008.

[4] Patterson, D. & Hennessy, J. (2005),

computer Organization and Design : The

Hardware/software Interface , Morgan

Kaufmann.

[5] B. Lee and N. Burgess,

“Parameterisable Floatingpoint Operations

on FPGA,” Conference Record of the

Thirty-Sixth Asilomar Conference on

Signals, Systems, and Computers, 2002

[6] A. Jaenicke and W.Luk,

"Parameterized Floating- Point Arithmetic

on FPGAs", Proc. of IEEE ICASSP, 2001,

vol. 2, pp. 897-900.

[7]L. Louca, T. A. Cook, and W.H.

Johnson, “Implementation of IEEE Single

Precision Floating Point Addition and

Multiplication on FPGAs, ” Proceedings

of 83 the IEEE Symposium on FPGAs for

Custom Computing Machines

(FCCM‟96), pp. 107–116, 1996.

[8] John G. Proakis and Dimitris G.

Manolakis (1996), “Digital Signal

Processing: Principles,.Algorithms and

Applications”, Third Edition.

[9] N. Shirazi, A. Walters, and P.Athanas,

“Quantitative Analysis of Floating Point

Arithmetic on FPGA Based Custom

Computing Machines,”Proceedings of the

IEEESymposium on FPGAs for Custom

Computing Machines (FCCM‟95),

pp.155–162, 1995.

[10] B. Fagin and C. Renard, “Field

Programmable Gate Arrays and Floating

Point Arithmetic,” IEEE Transactions on

VLSI, vol. 2, no. 3, pp. 365–367, 1994.

