International Journal of Engineering in Advanced Research

VOLUME-4

Science and Technology ISSUE-12

AN ENHANCED AND LOW POWER DOUBLE PRECISION

FLOATING POINT MULTIPLIER DESIGN

! K.RAVI VARMA, > M.SANDYA
! M.Tech, Dept of ECE, Andhra Loyola Institute of Engineering &Technology Vijayawada, AP ,India
2 Assistant Professor in ECE Andhra Loyola Institute of Engineering &Technology Vijayawada, AP,India

Abstract: ABSTRACT: The main objective of this project is to design an efficient IEEE-754
floating point multiplier .This project focuses on double precision normalized binary floating
point multiplication in IEEE754 format. The proposed design is compliant with IEEE-754
format and handles over flow, under flow, rounding and various exception conditions.
FLOATING-POINT arithmetic provides a wide dynamic range, freeing special purpose
processor designers from the scaling and overflow/underflow concerns that arise with fixed-
point arithmetic. Further this project can be enhanced by replacing the general multiplier
architecture with modified booth multiplication. This modification yields reduction of partial
products to half. Partial products reduction changes system overall performance in an
efficient manner. Xilinx tool is used to perform this task with the help of VHDL language
KEYWORDS: Floating point multiplier, double precision, underflow, Modified booth,
rounding, IEEE 754, VHDL, Xilinx.

*

*

l. INTRODUCTION:
The real numbers represented in binary
format are known as floating point
numbers. Based on IEEE-754 standard,
floating point formats are classified into
binary and decimal interchange formats.
Floating point multipliers are very
important in DSP applications. This paper
focuses on double precision normalized
binary interchange format. Floating point
numbers are one possible way of
representing real numbers in binary
format; the IEEE 754 [3] standard presents

two different floating point formats,

Binary interchange format and Decimal
interchange format. Multiplying floating
point numbers is a critical requirement for
DSP applications involving large dynamic
range. This paper focuses on double
precision floating point binary interchange
format. Figure 1 shows the IEEE 754
double precision floating point binary
format representation; it consists of a one
bit sign (S), an eleven bits exponent (E),
and a fifty two bits fraction (M or
Mantissa). An extra bit is added to the
fraction to form what is called the

significandl. If the exponent is greater

International Journal of Engineering in Advanced Research Science and Technology
Copyright @ 2015 IJEARST. All rights reserved. Page No: 85

International Journal of Engineering in Advanced Research

Science and Technology

VOLUME-4
ISSUE-12

than 0 and smaller than 2047, and there is
1 in the MSB of the significand then the
number is said to be a normalized number,
Significand is the mantissa with an extra
MSB bit. It I shows the IEEE- 754 double
precision binary format representation.
Sign (S) is represented with one bit,
exponent (E) and fraction (M or Mantissa)
are represented with eleven and fifty two
bits respectively. For a number is said to
be a normalized number, it must consist of
‘one' in the MSB of the significand and
exponent is greater than zero and smaller
than 1023. The real number is represented
by equations (1) & (2).

Z = (-15)* 2 E-Riabx (1) (1)

Value = (-ISign bit) * 2 (Exponent -1023)
* (1.Mantissa) (2)

5%l 0
Multiplying two numbers in floating point
format is done by 1- calculating the sign
by XORing the sign of the two numbers,
2- adding the exponent of the two numbers
then subtracting the bias from their result,
and 3- multiplying the significand of the
two numbers. In order to represent the

multiplication result as a normalized

number there should be 1 in the MSB of
the result (leading one).

GENERAL MULTIPLICATION:
MULTIPLICATION is a complex
arithmetic operation, which is reflected in
its relatively high signal propagation
delay, high power dissipation, and large
area requirement. When choosing a
multiplier for a digital system, the bit
width of the multiplier is required to be at
least as wide as the largest operand of the
applications that are to be executed on that
digital system. The bit width of the
multiplier is, therefore, often much larger
than the data represented inside the
operands, which leads to unnecessarily
high power dissipation and unnecessary
long delay. This resource waste could
partially be remedied by having several
multipliers, each with a specific bit width,
and use the particular multiplier with the
smallest bit width that is large enough to
accommodate the current multiplication.
Such a scheme would assure that a
multiplication would be computed on a
multiplier that has been optimized in terms
of power and delay for that specific bit
width. However, using several multipliers
with different bit widths would not be an
efficient solution, mainly because of the
huge area overhead.l There have been
several studies on operand bit widths of

International Journal of Engineering in Advanced Research Science and Technology
Copyright @ 2015 IJEARST. All rights reserved. Page No: 86

International Journal of Engineering in Advanced Research

Science and Technology

VOLUME-4
ISSUE-12

integer applications and it has been shown
that for the SPECint95 benchmarks more
than 50% of the instructions are
instructions where both operands are less
than or equal to 16 bits [1] (henceforth
called narrow-width operations). This
property has been explored to save power,
through operand guarding [1]-[3]. In
operand guarding the most significant bits
of the operands are not switched, thus
power is saved in the arithmetic unit when
multiple narrow-width operations are
computed consecutively. Brooks et al. [1]
showed that power dissipation can be
reduced by gating of the upper part of
narrow-width
SPECint95 and Media Bench benchmarks,

the power reduction of an operand-guarded

operands. For the

integer unit was 54% and 58%,
respectively, which accounts for a total
power reduction of 5-6% for an entire data

path.

FLOATING
MULTIPLICATION
ALGORITHM

As stated in the introduction, normalized

POINT

floating point

numbers have the form of Z = (-1S) * 2 (E
- Bias) * (1.M). To

Multiply two floating point numbers the

following is done:

1. Obtaining the sign; i.e. Sa xor Sb
2. Adding the exponents; i.e. (E1 + E2 —
Bias)
3. Multiplying the significand; i.e.
(1.M1*1.M2)
4. Placing the decimal point in the
significant result
5. Normalizing the result; i.e. obtaining 1
at the MSB of the

Results significand
6. Rounding the result to fit in the
available bits
7. Checking for underflow/overflow

occurrence

Rounding and Exceptions

The IEEE standard specifies four rounding
modes round to nearest, round to zero,
round to positive infinity, and round to
negative infinity. Table 1 show the
rounding modes selected for various bit
combinations of rmode. Based on the
rounding changes to the mantissa
corresponding changes has to be made in
the exponent part also.

Modified Booth Algorithm

Booth multiplication algorithm consists of
three major steps as shown in the structure
of booth algorithm figure that includes
generation of partial product called as

recoding, reducing the partial product in

International Journal of Engineering in Advanced Research Science and Technology
Copyright @ 2015 IJEARST. All rights reserved. Page No: 87

International Journal of Engineering in Advanced Research

Science and Technology

VOLUME-4
ISSUE-12

two rows, and addition that gives final
product.

For a better understanding of modified
booth algorithm & for multiplication, we
must know about each block of booth

algorithm for multiplication process.

Bit combination Rounding Mode

00 round nearest even

round to_zero

round_up

round down

Modified Booth Algorithm Encoder

This modified booth multiplier is used to
perform high-speed multiplications using
modified booth algorithm. This modified
booth multiplier’s computation time and
the logarithm of the word length of
operands are proportional to each other.
We can reduce half the number of partial
product. Radix-4 booth algorithm used
here increases the speed of multiplier and

reduces the area of multiplier circuit. In

this algorithm, every second column is
taken and multiplied by 0 or +1 or +2 or -1
or -2 instead of multiplying with 0 or 1
after shifting and adding of every column
of the booth multiplier. Thus, half of the
partial product can be reduced using this

booth algorithm. Based on the multiplier

bits, the process of encoding the
multiplicand is performed by radix-4 booth
encoder.

The overlapping is used for comparing
three bits at a time. This grouping is
started from least significant bit (LSB), in
which only two bits of the booth multiplier
are used by the first block and a zero is

assumed as third bit as shown in the figure.

111000110

The figure shows the functional operation
of the radix-4 booth encoder that consists
of eight different types of states. The
outcomes or multiplication of multiplicand
with 0, -1, and -2 are consecutively
obtained during these eight states

The steps given below represent the radix-
4 booth algorithm:

o Extend the sign bit 1 position if
necessary to ensure that n is even.
Append a 0 to the right of the least
significant bit of the booth
multiplier.

According to the value of each vector,
each partial product will be 0, +y, -y, +2y
or -2y.

Modified booth multiplier’s (Z) digits can
be defined with the following equation:

Zj =02 + q2J-1 -292j+1 withg-1 =0

International Journal of Engineering in Advanced Research Science and Technology
Copyright @ 2015 IJEARST. All rights reserved. Page No: 88

http://www.efxkits.us/electrical-engineering-projects-for-final-year-beng-and-meng-honours/

International Journal of Engineering in Advanced Research

VOLUME-4

Science and Technology ISSUE-12

The figure shows the modified booth represent all five possibilities -2X, -X, 0,

algorithm encoder circuit. Now, the product of X, 2X.

any digit of Z with multiplicand Y may be -2y,
-y, 0,y, 2y.

Booth recoding table for radix-4
Multiplier |Recoded
Bits Block |1-bit pair
e O PO 50 B el O B

a) Partial Product Generator

2 bit booth

Mx0

Mx1

0
0 Mxl
1
1

Mx2

-1 Mx-2

-1 -1 Mx-1

0 -1 Mx-1

bk ot | |t | DI DD D

0 0 Mx0

Booth Recoding Table for Radix-4

q2j-1
q—

q2j+1 Neg

Booth’s Encoder
But, by performing left shift operation at
partial products generation stage, 2y may
be generated. By taking 1's complement to
this 2y, negation is done, and then one is
added in appropriate 4-2 compressor. One
booth encoder shown in the figure
generates three output signals by taking

three consecutive bit inputs so as to

)_ Partial
Multiplier | Partial Yid- Product
Value Product
Neg

2Y

Partial Product Generator
If we take the partial product as -2y, -y, 0,
y, 2y then, we have to modify the general
partial product generator. Now, every
partial product point consists of two inputs
(consecutive bits) from multiplicand and,
based on the requirement, the output will
be generated and its complements also
generated in case if required. The figure
shows the partial product generator circuit.
The 2’s complement is taken for negative
values of y. There are different types of
adders such as conventional adders, ripple-
carry adders, carry-look-ahead adders, and
carry select adders. The carry select adders
(CSLA) and carry-look-ahead adders are
considered as fastest adders and are
frequently used. The multiplication of y is
done by after performing shift operation
on y — that is — y is shifted to the left by

one hit.

International Journal of Engineering in Advanced Research Science and Technology
Copyright @ 2015 IJEARST. All rights reserved. Page No: 89

http://www.efxkits.us/wp-content/uploads/2014/12/Booths-Encoder.j
http://www.efxkits.us/wp-content/uploads/2014/12/Partial-Product-Generator.j

International Journal of Engineering in Advanced Research
VOLUME-4

Science and Technology ISSUE-12

1. RADIX-8 MODIFIED could obtain using radix-4 architecture
BOOTH ALGORITHM:

_ i) (with the additional advantage of using a
Radix-8 recoding applies the same

' _ less number of transistors). To generate 3Y
algorithm as radix-4, but now we take])
with 21-bit words we only have to add

quartets of bits instead of triplets. Each))
2Y+Y, that is, to add the number with the

quartet is codified as asigned-digit using

same number shifted one position to the
the table

left.
Quartet value Sioned-digit value . . .
~ 0000 £ Og Radix-8 Booth recoding applies the same

0001 +1 algorithm as that of Radix-4, but now we
0010 +1

0011 +2 take quartets of bits instead of triplets.
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

+
I~

Each quartet is codified as a signed digit

+ + +
=l

using Table I1. Radix-8 algorithm reduces

the number of partial products to n/3,

1
) s

where n is the number of multiplier bits.

1
[¥%]

Thus it allows a time gain in the partial

L N A]

products summation

1
f—

=

IV. RESULT:

Here we have an odd multiple of the
multiplicand, 3Y, which is not
immediately available. To: generate it we T mm -

P

need to perform this previous

i
i)
g
#

add:2Y+Y=3Y. But we are designing a
multiplier for specific purpose and thereby

the multiplicand belongs to a previously

known set of numbers which are stored in

a memory chip. We have tried to take

advantage of this fact, to ease the

bottleneck of the radix-8 architecture, that

W e | Copbrley | @ oo | Fdnriatats | g Sl

2 Me 0N REEY

Power analysis of existing code:

is, the generation of 3Y. In this manner we
try to attain a better overall multiplication
time, or at least comparable to the time we

International Journal of Engineering in Advanced Research Science and Technology
Copyright @ 2015 IJEARST. All rights reserved. Page No: 90

International Journal of Engineering in Advanced Research
VOLUME-4

Science and Technology ISSUE-12

Bamm =S, Minimum input arrival time before

clock: 0.695ns

Maximum output required time after
clock: 1.935ns

Maximum combinational path delay:
10.564ns

Timing Summary of enhanced code:
Speed Grade: -3

Minimum period: 0.766ns (Maximum
Power analysis of enhanced code: Frequency: 1306.336 MHz)
Minimum input arrival time before
M clock: 0.695ns
: : Maximum output required time after
clock: 1.935ns
Maximum combinational path delay:

10.560ns

V. CONCLUSION:

Finally, this project is implemented in an

efficient manner with floating point and

radix8 modified booth encoding algorithm

for multipurpose applications. This

concept is having the capability of

handling the overflow, underflow cases,

Speed Grade: -3 and this multiplier support truncation
rounding mode was implemented. It has

Minimum period: 0.766ns (Maximum been performed the design and
Frequency: 1306.336 MHz) implementation of a 32 bit radix-8 booth

International Journal of Engineering in Advanced Research Science and Technology
Copyright @ 2015 IJEARST. All rights reserved. Page No: 91

International Journal of Engineering in Advanced Research

Science and Technology

VOLUME-4
ISSUE-12

multiplier. It has been proved that it can be
useful to apply a radix-8 architecture in
high speed multipliers because of the gain
in time obtained due to reduction of partial

products to n/3.

VI. REFERENCES:
[1] M.Al-Ashrafy,

W.Anis,“An Efficient Implementation of

A.Salem and

Floating Point Multiplier ” Electronics
Communications and Photonics
Conference(SIECPC) 2011 Saudi
International, pp.1- 5,2011.

[2] F.de Dinechin and B.Pasca. Large
multipliers with fewer DSP blocks.In Field
Pro- grammable Logic and Applications.
IEEE, Aug. 2009. [3] IEEE 754-2008,
IEEE Standard for Floating-Point ic,
2008.

[4] Patterson, D. & Hennessy, J. (2005),
computer Organization and Design : The
Hardware/software Interface , Morgan
Kaufmann.

[5] B. Lee and N. Burgess,
“Parameterisable Floatingpoint Operations
on FPGA,” Conference Record of the
Thirty-Sixth Asilomar Conference on
Signals, Systems, and Computers, 2002

[6] A. Jaenicke and W.Luk,
"Parameterized Floating- Point Arithmetic
on FPGASs", Proc. of IEEE ICASSP, 2001,

vol. 2, pp. 897-900.

[7]JL. Louca, T. A. Cook, and W.H.
Johnson, “Implementation of IEEE Single
Precision Floating Point Addition and
Multiplication on FPGAs, ” Proceedings
of 83 the IEEE Symposium on FPGAs for
Custom
(FCCM™96), pp. 107-116, 1996.

[8] John G. Proakis and Dimitris G.
Manolakis (1996),

Processing: Principles,.Algorithms and

Computing Machines

“Digital ~ Signal

Applications”, Third Edition.

[9] N. Shirazi, A. Walters, and P.Athanas,
“Quantitative Analysis of Floating Point
Arithmetic on FPGA Based Custom
Computing Machines,”Proceedings of the
IEEESymposium on FPGAs for Custom
Computing Machines (FCCM™95),
pp.155-162, 1995.

[10] B. Fagin and C. Renard, “Field
Programmable Gate Arrays and Floating
Point Arithmetic,” IEEE Transactions on

VLSI, vol. 2, no. 3, pp. 365-367, 1994.

International Journal of Engineering in Advanced Research Science and Technology
Copyright @ 2015 IJEARST. All rights reserved. Page No: 92

