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Abstract: ABSTRACT: The main objective of this project is to design an efficient IEEE-754 

floating point multiplier .This project focuses on double precision normalized binary floating 

point multiplication in IEEE754 format. The proposed design is compliant with IEEE-754 

format and handles over flow, under flow, rounding and various exception conditions. 

FLOATING-POINT arithmetic provides a wide dynamic range, freeing special purpose 

processor designers from the scaling and overflow/underflow concerns that arise with fixed-

point arithmetic.  Further this project can be enhanced by replacing the general multiplier 

architecture with modified booth multiplication. This modification yields reduction of partial 

products to half. Partial products reduction changes system overall performance in an 

efficient manner. Xilinx tool is used to perform this task with the help of VHDL language 

KEYWORDS:  Floating point multiplier, double precision, underflow, Modified booth, 

rounding, IEEE 754, VHDL, Xilinx. 

*--------------------------------------------------------------------------* 

I. INTRODUCTION: 

The real numbers represented in binary 

format are known as floating point 

numbers. Based on IEEE-754 standard, 

floating point formats are classified into 

binary and decimal interchange formats. 

Floating point multipliers are very 

important in DSP applications. This paper 

focuses on double precision normalized 

binary interchange format.  Floating point 

numbers are one possible way of 

representing real numbers in binary 

format; the IEEE 754 [3] standard presents 

two different floating point formats, 

Binary interchange format and Decimal 

interchange  format. Multiplying floating 

point numbers is a critical requirement for 

DSP applications involving large dynamic 

range. This paper focuses on double 

precision floating point binary interchange 

format. Figure 1 shows the IEEE  754 

double precision floating point binary 

format representation; it consists of a one 

bit sign (S), an eleven bits exponent (E), 

and a fifty two bits fraction (M or 

Mantissa). An extra bit is added to the 

fraction to form what is called the 

significand1. If the exponent is greater 
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than 0 and smaller than 2047, and there is 

1 in the MSB of the significand then the 

number is said to be a normalized number, 

Significand is the mantissa with an extra 

MSB bit.  It I shows the IEEE- 754 double 

precision binary format representation. 

Sign (S) is represented with one bit, 

exponent (E) and fraction (M or Mantissa) 

are represented with eleven and fifty two 

bits respectively. For a number is said to 

be a normalized number, it must consist of 

'one' in the MSB of the significand and 

exponent is greater than zero and smaller 

than 1023. The real number is represented 

by equations (I) & (2).  

 

Z = (-I
S
)* 2 

(E - Ria.l)
 * (1. M) ______(1 ) 

 

Value = (-ISign bit) * 2 (Exponent -1023) 

* (I.Mantissa) _____(2) 

 

 

Multiplying two numbers in floating point 

format is done by 1- calculating the sign 

by XORing the sign of the two numbers, 

2- adding the exponent of the two numbers 

then subtracting the bias from their result, 

and 3- multiplying the significand of the 

two numbers. In order to represent the 

multiplication result as a normalized 

number there should be 1 in the MSB of 

the result (leading one).  

GENERAL MULTIPLICATION: 

MULTIPLICATION is a complex 

arithmetic operation, which is reflected in 

its relatively high signal propagation 

delay, high power dissipation, and large 

area requirement. When choosing a 

multiplier for a digital system, the bit 

width of the multiplier is required to be at 

least as wide as the largest operand of the 

applications that are to be executed on that 

digital system. The bit width of the 

multiplier is, therefore, often much larger 

than the data represented inside the 

operands, which leads to unnecessarily 

high power dissipation and unnecessary 

long delay. This resource waste could 

partially be remedied by having several 

multipliers, each with a specific bit width, 

and use the particular multiplier with the 

smallest bit width that is large enough to 

accommodate the current multiplication. 

Such a scheme would assure that a 

multiplication would be computed on a 

multiplier that has been optimized in terms 

of power and delay for that specific bit 

width. However, using several multipliers 

with different bit widths would not be an 

efficient solution, mainly because of the 

huge area overhead.1 There have been 

several studies on operand bit widths of 
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integer applications and it has been shown 

that for the SPECint95 benchmarks more 

than 50% of the instructions are 

instructions where both operands are less 

than or equal to 16 bits [1] (henceforth 

called narrow-width operations). This 

property has been explored to save power, 

through operand guarding [1]–[3]. In 

operand guarding the most significant bits 

of the operands are not switched, thus 

power is saved in the arithmetic unit when 

multiple narrow-width operations are 

computed consecutively. Brooks et al. [1] 

showed that power dissipation can be 

reduced by gating of the upper part of 

narrow-width operands. For the 

SPECint95 and Media Bench benchmarks, 

the power reduction of an operand-guarded 

integer unit was 54% and 58%, 

respectively, which accounts for a total 

power reduction of 5–6% for an entire data 

path. 

 

II. FLOATING POINT 

MULTIPLICATION 

ALGORITHM 

As stated in the introduction, normalized 

floating point 

numbers have the form of Z = (-1S) * 2 (E 

- Bias) * (1.M). To 

Multiply two floating point numbers the 

following is done: 

1. Obtaining the sign; i.e. Sa xor Sb 

2. Adding the exponents; i.e. (E1 + E2 – 

Bias) 

3. Multiplying the significand; i.e. 

(1.M1*1.M2) 

4. Placing the decimal point in the 

significant result 

5. Normalizing the result; i.e. obtaining 1 

at the MSB of the 

    Results significand 

6. Rounding the result to fit in the 

available bits 

7. Checking for underflow/overflow 

occurrence 

 

Rounding and Exceptions 

The IEEE standard specifies four rounding 

modes round to nearest, round to zero, 

round to positive infinity, and round to 

negative infinity. Table 1 show the 

rounding modes selected for various bit 

combinations of rmode. Based on the 

rounding changes to the mantissa 

corresponding changes has to be made in 

the exponent part also. 

Modified Booth Algorithm 

Booth multiplication algorithm consists of 

three major steps as shown in the structure 

of booth algorithm figure that includes 

generation of partial product called as 

recoding, reducing the partial product in 
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two rows, and addition that gives final 

product. 

For a better understanding of modified 

booth algorithm & for multiplication, we 

must know about each block of booth 

algorithm for multiplication process. 

 

Modified Booth Algorithm Encoder 

This modified booth multiplier is used to 

perform high-speed multiplications using 

modified booth algorithm. This modified 

booth multiplier’s computation time and 

the logarithm of the word length of 

operands are proportional to each other. 

We can reduce half the number of partial 

product. Radix-4 booth algorithm used 

here increases the speed of multiplier and 

reduces the area of multiplier circuit. In 

this algorithm, every second column is 

taken and multiplied by 0 or +1 or +2 or -1 

or -2 instead of multiplying with 0 or 1 

after shifting and adding of every column 

of the booth multiplier. Thus, half of the 

partial product can be reduced using this 

booth algorithm. Based on the multiplier 

bits, the process of encoding the 

multiplicand is performed by radix-4 booth 

encoder. 

The overlapping is used for comparing 

three bits at a time. This grouping is 

started from least significant bit (LSB), in 

which only two bits of the booth multiplier 

are used by the first block and a zero is 

assumed as third bit as shown in the figure. 

 

The figure shows the functional operation 

of the radix-4 booth encoder that consists 

of eight different types of states. The 

outcomes or multiplication of multiplicand 

with 0, -1, and -2 are consecutively 

obtained during these eight states 

The steps given below represent the radix-

4 booth algorithm: 

 Extend the sign bit 1 position if 

necessary to ensure that n is even. 

 Append a 0 to the right of the least 

significant bit of the booth 

multiplier. 

According to the value of each vector, 

each partial product will be 0, +y, -y, +2y 

or -2y. 

Modified booth multiplier’s (Z) digits can 

be defined with the following equation: 

Zj = q2j + q2j-1 -2q2j+1 with q-1 = 0 

http://www.efxkits.us/electrical-engineering-projects-for-final-year-beng-and-meng-honours/
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The figure shows the modified booth 

algorithm encoder circuit. Now, the product of 

any digit of Z with multiplicand Y may be -2y, 

-y, 0, y, 2y. 

 

Booth Recoding Table for Radix-4 

 

 

Booth’s Encoder 

But, by performing left shift operation at 

partial products generation stage, 2y may 

be generated. By taking 1′s complement to 

this 2y, negation is done, and then one is 

added in appropriate 4-2 compressor. One 

booth encoder shown in the figure 

generates three output signals by taking 

three consecutive bit inputs so as to 

represent all five possibilities -2X, -X, 0, 

X, 2X. 

a) Partial Product Generator 

 

Partial Product Generator 

If we take the partial product as -2y, -y, 0, 

y, 2y then, we have to modify the general 

partial product generator. Now, every 

partial product point consists of two inputs 

(consecutive bits) from multiplicand and, 

based on the requirement, the output will 

be generated and its complements also 

generated in case if required. The figure 

shows the partial product generator circuit. 

The 2’s complement is taken for negative 

values of y. There are different types of 

adders such as conventional adders, ripple-

carry adders, carry-look-ahead adders, and 

carry select adders. The carry select adders 

(CSLA) and carry-look-ahead adders are 

considered as fastest adders and are 

frequently used. The multiplication of y is 

done by after performing shift operation 

on y – that is – y is shifted to the left by 

one bit. 

http://www.efxkits.us/wp-content/uploads/2014/12/Booths-Encoder.j
http://www.efxkits.us/wp-content/uploads/2014/12/Partial-Product-Generator.j
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III. RADIX-8 MODIFIED 

BOOTH ALGORITHM: 

Radix-8 recoding applies the same 

algorithm as radix-4, but now we take 

quartets of bits instead of triplets. Each 

quartet is codified as asigned-digit using 

the table  

 

 

Here we have an odd multiple of the 

multiplicand, 3Y, which is not 

immediately available. To: generate it we 

need to perform this previous 

add:2Y+Y=3Y. But we are designing a 

multiplier for specific purpose and thereby 

the multiplicand belongs to a previously 

known set of numbers which are stored in 

a memory chip. We have tried to take 

advantage of this fact, to ease the 

bottleneck of the radix-8 architecture, that 

is, the generation of 3Y. In this manner we 

try to attain a better overall multiplication 

time, or at least comparable to the time we 

could obtain using radix-4 architecture 

(with the additional advantage of using a 

less number of transistors). To generate 3Y 

with 21-bit words we only have to add 

2Y+Y, that is, to add the number with the 

same number shifted one position to the 

left. 

Radix-8 Booth recoding applies the same 

algorithm as that of Radix-4, but now we 

take quartets of bits instead of triplets. 

Each quartet is codified as a signed digit 

using Table II. Radix-8 algorithm reduces 

the number of partial products to n/3, 

where n is the number of multiplier bits. 

Thus it allows a time gain in the partial 

products summation 

 

IV. RESULT: 

 

 

Power analysis of existing code: 
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Power analysis of enhanced code: 

 

 

Timing Summary of existing code: 

--------------- 

Speed Grade: -3 

 

   Minimum period: 0.766ns (Maximum 

Frequency: 1306.336MHz) 

   Minimum input arrival time before 

clock: 0.695ns 

   Maximum output required time after 

clock: 1.935ns 

   Maximum combinational path delay: 

10.564ns 

 

Timing Summary of enhanced code: 

--------------- 

Speed Grade: -3 

 

   Minimum period: 0.766ns (Maximum 

Frequency: 1306.336MHz) 

   Minimum input arrival time before 

clock: 0.695ns 

   Maximum output required time after 

clock: 1.935ns 

   Maximum combinational path delay: 

10.560ns 

 

V. CONCLUSION: 

 

Finally, this project is implemented in an 

efficient manner with floating point and 

radix8 modified booth encoding algorithm 

for multipurpose applications. This 

concept is having the capability of 

handling the overflow, underflow cases, 

and this multiplier support truncation 

rounding mode was implemented. It has 

been performed the design and 

implementation of a 32 bit radix-8 booth 
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multiplier. It has been proved that it can be 

useful to apply a radix-8 architecture in 

high speed multipliers because of the gain 

in time obtained due to reduction of partial 

products to n/3. 
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