International Journal of Engineering In Advanced Research
Science and Technology ISSN: 2278-256

November 2016
VOLUME -2
ISSUE-4
Page:7932-37

RELIABLE AND EFFICIENT ON CHIP BUS PROTOCOL
USING AHB

1. VATSAVAI LALITHASUVARNA, 2. V. RAMOJI, 3.B.V.RAMANA
1. PG Scholar,Dept of ECE, BonamVenkataChalamayya institute of technology & science, amalapuram
2. Assistant professor, Dept of ECE, BonamVenkataChalamayya institute of technology & science, amalapuram
3. Professor, Dept of ECE, BonamVenkataChalamayya institute of technology & science, amalapuram

ABSTRACT:

Designing an on-chip interconnection bus with more efficiency using modified AHB is main criteria in this project. A
bridge between AHB master and slave with supportive application of MC is also proposed and the resultant efficiency in
respect of area overhead and speed is provided. In the subject process, the design and implementation details of AMBA
high-performance bus (AHB) master and slave with memory controller (MC) interface are discussed. Scalable encryption
Algorithm is an enhanced algorithm for providing an efficient security for data. SEA provides area and power efficient
implementation. It yields atmost secured bus interfacing data as enhancement for this project.

Keywords: Soc, O.C.P, AMBA, AHB, SEA

I. Introduction: As more and more IP cores are
integrated into an SOC design, the.communication flow
between IP cores has increased drastically and the
efficiency of the on-chip bus has become a dominant
factor for the performance of a system. An SOC chip
usually contains a large number of IP cores that
communicate with each other through on-chip buses. As
the VLSI process technology continuously advances,
the frequency and the amount of the data
communication between cores increase substantially.
As a result, the ability of on-chip buses to deal with the
large amount of data traffic becomes a dominant factor
for the overall performance. The design of on-chip
buses can be divided into two parts: bus interface and
bus architecture. The bus interface involves a set of
interface signals and their corresponding timing
relationship, while the bus architecture refers to the
internal components of buses and the interconnections
among the IP cores. The widely accepted on-chip bus,
AMBA AHB [1], defines a set of bus interface to
facilitate basic (single) and = burst read/write
transactions. AHB also defines the internal bus
architecture, which is mainly a shared bus composed of
multiplexors. The multiplexer-based bus. architecture
works well for a design with a small number-of IP
cores. When the number of integrated IP cores
increases, the communication between IP cores also
increase and it becomes quite frequent that two or more
master IPs would request data from different slaves at
the same time. The shared bus architecture often cannot
provide efficient communication since only one bus
transaction can be supported at a time.

To solve this problem, two bus protocols have
been proposed recently. One is the Advanced extensible
Interface protocol (AXI) proposed by the ARM
company. AXI defines five independent channels (write
address, write data, write response, read address, and
read data channels). Each channel involves a set of
signals. AXI does not restrict the internal bus

architecture and leaves it to designers. Thus designers
are allowed to integrate two IP cores with AXI by either
connecting the wires directly or invoking an in-house
bus between them. The other bus interface protocol is
proposed by a non-profitable "organization, the Open
Core Protocol — AHB [2]. AHB is an interface (or
socket) aiming to standardize and thus simplify the
system integration problems. It facilitates system
integration by defining a set of concrete interface (1/0
signals and the handshaking " protocol) which is
independent of the bus architecture. Based on this
interface IP core designers can concentrate on designing
the internal functionality of IP cores, bus designers can
emphasize on the internal bus architecture, and system
integrators can focus on the system issues such as the
requirement of the bandwidth and the whole system
architecture. In this way, system integration becomes
much more efficient. Most of the bus functionalities
defined in AXI and AHB are quite similar. The most
conspicuous difference between them is that AXI
divides the address channel into independent write
address channel and read address channel such that read
and write transactions can be processed simultaneously.
However, the additional area of the separated address
channels is the penalty. Some previous work has
investigated on-chip buses from various aspects. The
work presented in [3] and [4] develops high-level
AMBA bus models with fast simulation speed and high
timing accuracy. The authors in [7] propose an
automatic approach to generate high-level bus models
from a formal channel model of AHB. In both of the
above work, the authors concentrate on fast and
accurate simulation models at high-level but did not
provide real hardware implementation details. In [9],
the authors implement the AXI interface on shared bus
architecture. Even though it costs less in area, the
benefit of AXI in the communication efficiency may be
limited by the shared-bus architecture. In this paper we
propose a high-performance on-chip bus design with

International Journal of Engineering In Advanced Research
Science and Technology ISSN: 2278-256

November 2016
VOLUME -2
ISSUE-4
Page:7932-37

AHB as the bus interface. We choose AHB because it is
open to the public and AHB has provided some free
tools to verify this protocol. Our proposed bus
architecture features crossbar/partial -crossbar based
interconnect and realizes most transactions defined in
AHB, including 1) single transactions,2) burst
transactions, 3) lock transactions, 4) pipelined
transactions, and 5) out-of-order transactions. In
addition, the proposed bus is flexible such that one can
adjust the bus architecture according to the system
requirement.

The remainder of this paper is organized as
follows. In section 2The wvarious advanced
functionalities of on-chip buses are described. Section 3
describes functioning of the AHB Block Diagram.
Section 4 gives the Implementation of —~AHB
master/slave FSM. Section 5 is experimental results
which show the efficiency on both simulation speed and
data communication. Conclusions .are then drawn in
Section 6.

Il. AHB bus functionalities

The various bus functionalities includes

1) Burst

2) Lock

3) Pipelined and

4) Out-of-Order transactions.
e Burst transactions

The burst transactions allow the grouping of
multiple transactions that have a certain address
relationship, and can be classified into multi-request
burst and single-request burst according to how many
times the addresses are issued. FIGURE 1 shows the
two types of burst read transactions. The multi-request
burst as defined in AHB is illustrated in FIGURE 1(a)
where the address information must be issued for each
command of a burst transaction (e.g., All, Al2, A13
and Al14). This may cause some unnecessary overhead.
In the more advanced bus architecture, the single-
request burst transaction is supported. As shown in
FIGURE 1(b), which is the burst type defined in AHB,
the address information is issued only once for each
burst transaction. In our proposed bus design we
support both burst transactions such that IP cores with
various burst types can use the proposed on-chip bus
without changing their original burst behaviour.

Address[an [mzas]an] sz 1]ezz
™ S
Data] [on]mz[oiE]oie]oe [oee

ia) Multi-request burst

Addresg{an] [e21]
S~ ~2
Data[[oni]mz[ois[on] ceifozz

(b) Singlerequest burst

FIGURE 1. Burst transactions

e Lock transactions

Lock is a protection mechanism for masters that
have low bus priorities. Without this mechanism the
read/write transactions of masters with lower priority
would be interrupted whenever a higher-priority master
issues a request. Lock transactions prevent an arbiter
from performing arbitration and assure that the low
priority masters can complete its granted transaction
without being interrupted.
e Pipelined transactions

Figure 2(a) and 2(b) show the difference between
non-pipelined and pipelined read transactions. In
FIGURE 2(a), for a non-pipelined transaction a read
data must be returned after its corresponding address is
issued-plus a period of latency. For example, D21 is
sent right after-A21 is issued plus t. For a pipelined
transaction as shown in FIGURE 2(b), this hard link is
not required. Thus A21 can be issued right after A1l is
issued without waiting for the return of data requested
by A1l (i.e., D11-D14).

A{:Idret:ql "“1| |""21| |
— —
Data| EREHERCEEIEE
ki

(ap Nor-pipelined transactions
Address[A [~ IR |

— e
Datal |m1||:nz|ms|m4|nc21|nezm |
i) Pipelined transactions

FIGURE 2. Pipeline transactions
e Qut-of-order transactions

The out-of-order transactions allow the return order
of responses to be different from the order of their
requests. These transactions can. significantly improve
the communication efficiency of an SOC system
containing IP cores with various access latencies as
illustrated in FIGURE 3.In" FIGURE 3(a) which does
not allow out-of-order transactions, the corresponding
responses of A21 and A31must be returned after the
response of A1l.-With the support of out-of-order
transactions-as shown in FIGURE 3(b), the response
with shorter access latency (D21, D22 and D31) can be
returned before those with longer latency (D11-D14)
and thus the transactions can be completed in much less
cycles.

Address[an] m |

Datal N CICECETIE Bz = |
(=) Without out-of-order

Address[an 21 I

R —
Datal |ml|m?ﬁ{m1|mz|ma|m+|

(b With out-oforder
FIGURE 3. Out-of-order transactions

International Journal of Engineering In Advanced Research
Science and Technology ISSN: 2278-256

November 2016
VOLUME -2
ISSUE-4
Page:7932-37

111. Functional blocks of the AHB bus

The architecture of the proposed on-chip bus is
illustrated in FIGURE 4, where we show an example
with four masters and four slaves. A crossbar
architecture is employed such that more than one master
can communicate with more than one slave
simultaneously. If not all masters require the accessing
paths to all slaves, partial crossbar architecture is also
allowed. The main blocks of the proposed bus
architecture are described next.
e Arbiter

In traditional shared bus architecture, resource
contention happens whenever more than one master
requests the bus at the same time. For a crossbar or
partial crosshar architecture, resource contention occurs
when more than one master is to access the same slave
simultaneously. In the proposed design each slave IP is
associated with an arbiter that determines which master
can access the slave. The arbiter sends grant signal to
the requested master.
e Decoder

Since more than one slave exists in the system, the
decoder decodes the address and decides which slave
return response to the target master. In addition, the
proposed decoder also checks whether the transaction
address is illegal or nonexistent and responses with an
error message if necessary.

e Multiplexer

A multiplexer is used to solve the problem of
resource contention when more than one slave returns
the responses to the same master. It selects the
corresponding slave/master according to the given
selection lines. There are multiplexers one is address
and control mux and the two are for data read and write.
e Master/Slave

Master and Slave are the entities consisting of
different Address and Data Locations. Only the master
can send the commands and is the controlling entity.
The Slave responds to commands presented to it, either
by accepting data from the master, or representing data
to the master.

e FSM-M & FSM-S

FSM-M acts as a master and generates the AHB
signals of a master, while FSM-S acts as a slave and
generates those of a slave.

IV.Implementation of AHB
The request issued by system is given to slave
by MCmd signal. Similarly, in Write operation, the
input address and data provided by the system will be
given to slave through the signal MAddr and MData
and when those information’s are accepted, slave will
give SCmd Accept signal which ensures that the system

can issue next request. During Read operation, system
issues the request

MRey_1
M_ReT’ — MGrant 1

MR ARBITER |[——»MGrant2

o3 |, MGrni3
MReq 4 -
—

—* MGrant 4

MAddr
MASTER#) |MDat Addrefvnd contr ta SLAVEAD
SData i

[

MASTER#2

Wiite datajinre

m@ :

MASTER#4 SLAVE#

SLAVE#3

SSEL_1

SSEL 2
DECODER SSEL,-S
SSEL_4

—F

FIGURE 4.AHB Block Diagram

and address to slave which will set SResp and fetch the
corresponding data that is given to output through
Sdata.The design of the Open Core Protocol starts with
the initial study based on which the development of
FSM(Finite State Machine) for the various supporting
operation after which the development of VHDL for the
FSM.

FSM for AHB master: The Finite State Machine (FSM)
is developed for the simple write and read operation of
AHB Master. The simple write and read operation
indicates that the control goes to IDLE state after every
operation. Basically, the -operation in the AHB will be
held in two phases.

o Request Phase
e Response Phase
Initially the control will be in IDLE state
(Control = “000”) at which all the outputs such as
MCmd, MAddr and MData are set to “don’t care”. The
system will issue the request to the master such write
request which leads to the WRITE state (Control =
“001”). In this state, the address and the data will be
given to the slave that is to be written and hence the
process will get over only when the SCmd Accept is
asserted to high. If SCmd Accept is not set, this
represents that the write operation still in process and
the control will be in the WRITE state itself. Once the

International Journal of Engineering In Advanced Research
Science and Technology ISSN: 2278-256

November 2016
VOLUME -2
ISSUE-4
Page:7932-37

write operation is over the control will go to the IDLE
state and then it will check for the next request.
— IDLE \\

Contgol = adm
5£rwiar.went [SBesp ~ DVA s;:muarmm

WRlTE READ
mm&

2/ M,Gm

SCmdAccept=
& SResn 1= DYA”
——

&WAIT/"—/

pata.qut=sRete

figure 5: fsm forAHB master

When the read request is made, the control will
go to the READ state (Control = “010”") and the address
is send to the slave which in turn gives the SCmdAccept
signal that ends the request phase. Once-the
SCmdAccept is set and SResp is not Data Valid (DVA),
the control will go the WAIT state and will be waiting
for the SResp signal. When the read operation is over
which represents that the SResp is set to DVA and the
data for the corresponding address is taken. Hence the
SResp signal ends the response phase and the control
will go the IDLE state, then checks for the next request.

FSM for AHB slave: The FSM for the AHB Slave
which has the simple write and read operation is
developed and is shown in the Figure 6

ova & speta

FIGURE 6. fsm for AHB slave

The slave will be set to the respective state
based on the MCmd issued by the master and the output
of this slave is that the SCmdAccept and SResp.
Initially control will be in the IDLE state and when the
master issues the command as write request, and then
the control will go the WRITE state in which the data
will be written to the corresponding memory address
location which is sent by the masters. Once the write
operation is finished, the SCmdAccept signal is set to
high and is given to the master. When MCmd s
given as read request, then the control will move to the
READ state in which the data will read from the
particular memory address location that is given by the
master. Hence the SCmdAccept is set to high and the
SResp is set to the DVA which represents that the read
operation over and control goes to the IDLE state.

Depending on whether a transaction is a read
or a write operation, the request and response processes

are different. So for burst, burst count is specified that is
burstsize both for read and write.

Scalable Encryption Algorithm (SEA):

Most present symmetric encryption algorithms result
from a trade-off between implementation cost and
resulting performances. In addition, they generally aim
to be implemented efficiently on a large variety of
platforms. In this paper, we take an opposite approach
and consider a context where we have very limited
processing resources and throughput requirements. For
this purpose, we propose low-cost encryption routines
(i.e. with small code size and memory) targeted for
processors with a limited instruction set (i.e. AND, OR,
XOR gates, word rotation and modular addition). The
proposed design. is. parametric in the text, key and
processor size, -allows efficient combination of
encryption/decryption, “on-the-fly” key derivation and
its security against a number of recent cryptanalytic
techniques is discussed. Target applications for such
routines include any context -requiring low-cost
encryption and/or authentication.

In this paper, we consequently consider a general
context where we have very limited processing
resources (e.g. a small processor) ‘and throughput
requirements. It yields design criteria such as: low
memory requirements, small code ; size, limited
instruction set. In addition, we propose the flexibility as
another unusual design principle. SEAn,b is parametric
in the text, key and processor size. Such an approach
was motivated by the fact that many algorithms behave
differently on different platforms (e.g.8-bit or 32-bit
processors). In opposition, SEAn,b allows to obtain a
small encryption routine targeted to any given
processor, the security of the cipher being adapted in
function of its key size. Beyond these general
guidelines, alternative features were wanted, including
the efficient combination of encryption and decryption

or the ability to derive keys on the fly”.
Li

L
Ri+1KLi+1

International Journal of Engineering In Advanced Research \'\}g‘ﬁmeé 2316

Science and Technology ISSN: 2278-256 ISSUE-4
Page:7932-37

V. RESULTS supportive application of MC along with SEA is also
ot M3 - ey = proposed and the resultant efficiency in respect of area
EFie Bt Ver Smision Wk Lot overhead, speed and power optimization is provided in

1 ms o this concept.

REFERENCES
. [1] Advanced Microcontroller Bus Architecture
(AMBA) Specification Rev 20 & 3.0,
ttp://www.arm.com.
[2] Open Core Protocol (OCP) Specification,
http://www.ocpip.org/home.
[3] Y.-T. Kim, T. Kim, Y. Kim, C. Shin, E.-Y. Chung,
K.-M. Choi, J.-T. Kong, S.-K. Eo, “Fast and Accurate
Transaction Level Modeling of an Extended AMBAZ2.0
Bus Architecture,”
Design, Automation, and Test in Europe, pages 138-
139, 2005.
[4] James Aldis, “Use of OCP in OMAP 24207,
http://www.ocpip.org/,-2005.
[5] G. Schirner and R. Domer, “Quantitative Analysis
of Transaction Level Models for the AMBA Bus,”
Design, Automation, and Test in Europe, 6 pages, 2006.
[6] David C.-W. Chang, I.-T. Liao, J.-K. Lee, W.-F.
Chen, S.-Y. Tseng and C.-W. Jen, “PAC DSP Core and
Application Processors,” International Conference on
Multimedia and
Expo, pages 289-292, 2006.
[7] Partha Pratim Pande, Cristian Grecu, Michael Jones,

F—— Andr'e vanov, and Resve Saleh, ‘Performance

7 ; > evaluation and design trade-offs for network-on-chip
@ 8 =l 2B 43 ! interconnect architectures”, IEEE Trans. Computers,
vol. 54, no. 8, pp. 1025-1040, Aug. 2005.

SEA RESULTS [8] IBM Corporation, “Prioritization of Out-of-Order
Data Transfers on Shared Data Bus,” US Patent No.
7,392,353,

2008.

[91 N.Y.-C. Chang, Y.-Z. Liao and T.-S. Chang,
“Analysis of Shared-link AXI;” IET Computers &
Digital Techniques, Volume 3; Issue 4, pages 373-383,
20009.

[10] C.-K. Lo and R.-S. Tsay, “Automatic Generation
of Cycle Accurate: and Cycle Count Accurate
Transaction Level Bus Models from a Formal Model,”
Asia-and-South Pacific Design Automation Conference,
pages 558-563, 2009.

B e ——————————————_— =)

V1. Conclusion

An AHB-based MC is designed ,realized and tested in
the present concept. The implementation was carried
out using Vhdl HDL for SOC solutions. The design has
taken care of balance between area overhead and
speed.. A bridge between AHB master and slave with

