
International Journal of Engineering In Advanced Research 
Science and Technology ISSN: 2278-256 

November 2016 

VOLUME -2       

ISSUE-4     

Page:7932-37 

 

 

 

RELIABLE AND EFFICIENT ON CHIP BUS PROTOCOL 

USING AHB 
 

1. VATSAVAI LALITHASUVARNA, 2. V. RAMOJI, 3.B.V.RAMANA 

1. PG Scholar,Dept of ECE, BonamVenkataChalamayya institute of technology & science, amalapuram 

2. Assistant professor, Dept of ECE, BonamVenkataChalamayya institute of technology & science, amalapuram 

3. Professor, Dept of ECE, BonamVenkataChalamayya institute of technology & science, amalapuram 

 

ABSTRACT: 

Designing an on-chip interconnection bus with more efficiency using modified AHB is main criteria in this project. A 

bridge between AHB master and slave with supportive application of MC is also proposed and the resultant efficiency in 

respect of area overhead and speed is provided. In the subject process, the design and implementation details of AMBA 

high-performance bus (AHB) master and slave with memory controller (MC) interface are discussed. Scalable encryption 

Algorithm is an enhanced algorithm for providing an efficient security for data. SEA provides area and power efficient 

implementation. It yields atmost secured bus interfacing data as enhancement for this project. 
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I. Introduction: As more and more IP cores are 

integrated into an SOC design, the communication flow 

between IP cores has increased drastically and the 

efficiency of the on-chip bus has become a dominant 

factor for the performance of a system. An SOC chip 

usually contains a large number of IP cores that 

communicate with each other through on-chip buses. As 

the VLSI process technology continuously advances, 

the frequency and the amount of the data 

communication between cores increase substantially. 

As a result, the ability of on-chip buses to deal with the 

large amount of data traffic becomes a dominant factor 

for the overall performance. The design of on-chip 

buses can be divided into two parts: bus interface and 

bus architecture. The bus interface involves a set of 

interface signals and their corresponding timing 

relationship, while the bus architecture refers to the 

internal components of buses and the interconnections 

among the IP cores. The widely accepted on-chip bus, 

AMBA AHB [1], defines a set of bus interface to 

facilitate basic (single) and burst read/write 

transactions. AHB also defines the internal bus 

architecture, which is mainly a shared bus composed of 

multiplexors. The multiplexer-based bus architecture 

works well for a design with a small number of IP 

cores. When the number of integrated IP cores 

increases, the communication between IP cores also 

increase and it becomes quite frequent that two or more 

master IPs would request data from different slaves at 

the same time. The shared bus architecture often cannot 

provide efficient communication since only one bus 

transaction can be supported at a time. 

 To solve this problem, two bus protocols have 

been proposed recently. One is the Advanced extensible 

Interface protocol (AXI) proposed by the ARM 

company. AXI defines five independent channels (write 

address, write data, write response, read address, and 

read data channels). Each channel involves a set of 

signals. AXI does not restrict the internal bus 

architecture and leaves it to designers. Thus designers 

are allowed to integrate two IP cores with AXI by either 

connecting the wires directly or invoking an in-house 

bus between them. The other bus interface protocol is 

proposed by a non-profitable organization, the Open 

Core Protocol – AHB [2]. AHB is an interface (or 

socket) aiming to standardize and thus simplify the 

system integration problems. It facilitates system 

integration by defining a set of concrete interface (I/O 

signals and the handshaking protocol) which is 

independent of the bus architecture. Based on this 

interface IP core designers can concentrate on designing 

the internal functionality of IP cores, bus designers can 

emphasize on the internal bus architecture, and system 

integrators can focus on the system issues such as the 

requirement of the bandwidth and the whole system 

architecture. In this way, system integration becomes 

much more efficient. Most of the bus functionalities 

defined in AXI and AHB are quite similar. The most 

conspicuous difference between them is that AXI 

divides the address channel into independent write 

address channel and read address channel such that read 

and write transactions can be processed simultaneously. 

However, the additional area of the separated address 

channels is the penalty. Some previous work has 

investigated on-chip buses from various aspects. The 

work presented in [3] and [4] develops high-level 

AMBA bus models with fast simulation speed and high 

timing accuracy. The authors in [7] propose an 

automatic approach to generate high-level bus models 

from a formal channel model of AHB. In both of the 

above work, the authors concentrate on fast and 

accurate simulation models at high-level but did not 

provide real hardware implementation details. In [9], 

the authors implement the AXI interface on shared bus 

architecture. Even though it costs less in area, the 

benefit of AXI in the communication efficiency may be 

limited by the shared-bus architecture. In this paper we 

propose a high-performance on-chip bus design with 
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AHB as the bus interface. We choose AHB because it is 

open to the public and AHB has provided some free 

tools to verify this protocol. Our proposed bus 

architecture features crossbar/partial -crossbar based 

interconnect and realizes most transactions defined in 

AHB, including 1) single transactions,2) burst 

transactions, 3) lock transactions, 4) pipelined 

transactions, and 5) out-of-order transactions. In 

addition, the proposed bus is flexible such that one can 

adjust the bus architecture according to the system 

requirement. 

The remainder of this paper is organized as 

follows. In section 2The various advanced 

functionalities of on-chip buses are described. Section 3 

describes functioning of the AHB Block Diagram. 

Section 4 gives the Implementation of AHB 

master/slave FSM. Section 5 is experimental results 

which show the efficiency on both simulation speed and 

data communication. Conclusions are then drawn in 

Section 6.  

II. AHB bus functionalities 

The various bus functionalities includes 

1) Burst 

 2) Lock 

 3) Pipelined and 

 4) Out-of-Order transactions. 

 Burst transactions 

The burst transactions allow the grouping of 

multiple transactions that have a certain address 

relationship, and can be classified into multi-request 

burst and single-request burst according to how many 

times the addresses are issued. FIGURE 1 shows the 

two types of burst read transactions. The multi-request 

burst as defined in AHB is illustrated in FIGURE 1(a) 

where the address information must be issued for each 

command of a burst transaction (e.g., A11, A12, A13 

and A14). This may cause some unnecessary overhead. 

In the more advanced bus architecture, the single-

request burst transaction is supported. As shown in 

FIGURE 1(b), which is the burst type defined in AHB, 

the address information is issued only once for each 

burst transaction. In our proposed bus design we 

support both burst transactions such that IP cores with 

various burst types can use the proposed on-chip bus 

without changing their original burst behaviour. 

 

 

FIGURE 1. Burst transactions 

 Lock transactions 

Lock is a protection mechanism for masters that 

have low bus priorities. Without this mechanism the 

read/write transactions of masters with lower priority 

would be interrupted whenever a higher-priority master 

issues a request. Lock transactions prevent an arbiter 

from performing arbitration and assure that the low 

priority masters can complete its granted transaction 

without being interrupted. 

 Pipelined transactions 

 Figure 2(a) and 2(b) show the difference between 

non-pipelined and pipelined read transactions. In 

FIGURE 2(a), for a non-pipelined transaction a read 

data must be returned after its corresponding address is 

issued plus a period of latency. For example, D21 is 

sent right after A21 is issued plus t. For a pipelined 

transaction as shown in FIGURE 2(b), this hard link is 

not required. Thus A21 can be issued right after A11 is 

issued without waiting for the return of data requested 

by A11 (i.e., D11-D14). 

 

FIGURE 2. Pipeline transactions 

 Out-of-order transactions 

 

The out-of-order transactions allow the return order 

of responses to be different from the order of their 

requests. These transactions can significantly improve 

the communication efficiency of an SOC system 

containing IP cores with various access latencies as 

illustrated in FIGURE 3.In FIGURE 3(a) which does 

not allow out-of-order transactions, the corresponding 

responses of A21 and A31must be returned after the 

response of A11. With the support of out-of-order 

transactions as shown in FIGURE 3(b), the response 

with shorter access latency (D21, D22 and D31) can be 

returned before those with longer latency (D11-D14) 

and thus the transactions can be completed in much less 

cycles. 

 
FIGURE 3. Out-of-order transactions 
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III. Functional blocks of the AHB bus 

The architecture of the proposed on-chip bus is 

illustrated in FIGURE 4, where we show an example 

with four masters and four slaves. A crossbar 

architecture is employed such that more than one master 

can communicate with more than one slave 

simultaneously. If not all masters require the accessing 

paths to all slaves, partial crossbar architecture is also 

allowed. The main blocks of the proposed bus 

architecture are described next. 

 Arbiter 

In traditional shared bus architecture, resource 

contention happens whenever more than one master 

requests the bus at the same time. For a crossbar or 

partial crossbar architecture, resource contention occurs 

when more than one master is to access the same slave 

simultaneously. In the proposed design each slave IP is 

associated with an arbiter that determines which master 

can access the slave. The arbiter sends grant signal to 

the requested master. 

 Decoder 

Since more than one slave exists in the system, the 

decoder decodes the address and decides which slave 

return response to the target master. In addition, the 

proposed decoder also checks whether the transaction 

address is illegal or nonexistent and responses with an 

error message if necessary. 

 Multiplexer 

A multiplexer is used to solve the problem of 

resource contention when more than one slave returns 

the responses to the same master. It selects the 

corresponding slave/master according to the given 

selection lines. There are multiplexers one is address 

and control mux and the two are for data read and write. 

 Master/Slave 

Master and Slave are the entities consisting of 

different Address and Data Locations. Only the master 

can send the commands and is the controlling entity. 

The Slave responds to commands presented to it, either 

by accepting data from the master, or representing data 

to the master. 

 FSM-M & FSM-S 

FSM-M acts as a master and generates the AHB 

signals of a master, while FSM-S acts as a slave and 

generates those of a slave.  

 

IV. Implementat ion of  AHB 

       The request issued by system is given to slave 

by MCmd signal. Similarly, in Write operation, the 

input address and data provided by the system will be 

given to slave through the signal MAddr and MData 

and when those information’s are accepted, slave will 

give SCmd Accept signal which ensures that the system 

can issue next request. During Read operation, system 

issues the request  

 

 
FIGURE 4.AHB Block Diagram 

and address to slave which will set SResp and fetch the 

corresponding data that is given to output through 

Sdata.The design of the Open Core Protocol starts with 

the initial study based on which the development of 

FSM(Finite State Machine) for the various supporting 

operation after which the development of VHDL for the 

FSM.  

FSM for AHB master: The Finite State Machine (FSM) 

is developed for the simple write and read operation of 

AHB Master. The simple write and read operation 

indicates that the control goes to IDLE state after every 

operation. Basically, the operation in the AHB will be 

held in two phases.  

 Request Phase 

 Response Phase  

Initially the control will be in IDLE state 

(Control = “000”) at which all the outputs such as 

MCmd, MAddr and MData are set to “don’t care”. The 

system will issue the request to the master such write 

request which leads to the WRITE state (Control = 

“001”). In this state, the address and the data will be 

given to the slave that is to be written and hence the 

process will get over only when the SCmd Accept is 

asserted to high. If SCmd Accept is not set, this 

represents that the write operation still in process and 

the control will be in the WRITE state itself. Once the 
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write operation is over the control will go to the IDLE 

state and then it will check for the next request. 

 

figure 5:  fsm forAHB master  

When the read request is made, the control will 

go to the READ state (Control = “010”) and the address 

is send to the slave which in turn gives the SCmdAccept 

signal that ends the request phase. Once the 

SCmdAccept is set and SResp is not Data Valid (DVA), 

the control will go the WAIT state and will be waiting 

for the SResp signal. When the read operation is over 

which represents that the SResp is set to DVA and the 

data for the corresponding address is taken. Hence the 

SResp signal ends the response phase and the control 

will go the IDLE state, then checks for the next request. 

FSM for AHB slave: The FSM for the AHB Slave 

which has the simple write and read operation is 

developed and is shown in the Figure 6 

 

FIGURE 6.  fsm for AHB slave  

The slave will be set to the respective state 

based on the MCmd issued by the master and the output 

of this slave is that the SCmdAccept and SResp. 

Initially control will be in the IDLE state and when the 

master issues the command as write request, and then 

the control will go the WRITE state in which the data 

will be written to the corresponding memory address 

location which is sent by the masters. Once the write 

operation is finished, the SCmdAccept signal is set to 

high and is given to the master. When MCmd is 

given as read request, then the control will move to the 

READ state in which the data will read from the 

particular memory address location that is given by the 

master. Hence the SCmdAccept is set to high and the 

SResp is set to the DVA which represents that the read 

operation over and control goes to the IDLE state. 

Depending on whether a transaction is a read 

or a write operation, the request and response processes 

are different. So for burst, burst count is specified that is 

burstsize both for read and write.  

Scalable Encryption Algorithm (SEA): 

Most present symmetric encryption algorithms result 

from a trade-off between implementation cost and 

resulting performances. In addition, they generally aim 

to be implemented efficiently on a large variety of 

platforms. In this paper, we take an opposite approach 

and consider a context where we have very limited 

processing resources and throughput requirements. For 

this purpose, we propose low-cost encryption routines 

(i.e. with small code size and memory) targeted for 

processors with a limited instruction set (i.e. AND, OR, 

XOR gates, word rotation and modular addition). The 

proposed design is parametric in the text, key and 

processor size, allows efficient combination of 

encryption/decryption, “on-the-fly” key derivation and 

its security against a number of recent cryptanalytic 

techniques is discussed. Target applications for such 

routines include any context requiring low-cost 

encryption and/or authentication. 

In this paper, we consequently consider a general 

context where we have very limited processing 

resources (e.g. a small processor) and throughput 

requirements. It yields design criteria such as: low 

memory requirements, small code size, limited 

instruction set. In addition, we propose the flexibility as 

another unusual design principle. SEAn,b is parametric 

in the text, key and processor size. Such an approach 

was motivated by the fact that many algorithms behave 

differently on different platforms (e.g.8-bit or 32-bit 

processors). In opposition, SEAn,b allows to obtain a 

small encryption routine targeted to any given 

processor, the security of the cipher being adapted in 

function of its key size. Beyond these general 

guidelines, alternative features were wanted, including 

the efficient combination of encryption and decryption 

or the ability to derive keys “on the fly”. 
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V. RESULTS 

 

SEA RESULTS 

 

VI. Conclusion 

An AHB-based MC is designed ,realized and tested  in 

the present concept. The implementation was carried 

out using Vhdl HDL for SOC solutions. The design has 

taken care of balance between area overhead and 

speed.. A bridge between AHB master and slave with 

supportive application of MC along with SEA is also 

proposed and the resultant efficiency in respect of area 

overhead, speed and power optimization is provided in 

this concept. 
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