
International Journal of Engineering In Advanced Research
Science and Technology ISSN: 2278-256

November 2016

VOLUME -2

ISSUE-4

Page:7932-37

RELIABLE AND EFFICIENT ON CHIP BUS PROTOCOL

USING AHB

1. VATSAVAI LALITHASUVARNA, 2. V. RAMOJI, 3.B.V.RAMANA

1. PG Scholar,Dept of ECE, BonamVenkataChalamayya institute of technology & science, amalapuram

2. Assistant professor, Dept of ECE, BonamVenkataChalamayya institute of technology & science, amalapuram

3. Professor, Dept of ECE, BonamVenkataChalamayya institute of technology & science, amalapuram

ABSTRACT:

Designing an on-chip interconnection bus with more efficiency using modified AHB is main criteria in this project. A

bridge between AHB master and slave with supportive application of MC is also proposed and the resultant efficiency in

respect of area overhead and speed is provided. In the subject process, the design and implementation details of AMBA

high-performance bus (AHB) master and slave with memory controller (MC) interface are discussed. Scalable encryption

Algorithm is an enhanced algorithm for providing an efficient security for data. SEA provides area and power efficient

implementation. It yields atmost secured bus interfacing data as enhancement for this project.

Keywords: Soc, O.C.P, AMBA, AHB, SEA

I. Introduction: As more and more IP cores are

integrated into an SOC design, the communication flow

between IP cores has increased drastically and the

efficiency of the on-chip bus has become a dominant

factor for the performance of a system. An SOC chip

usually contains a large number of IP cores that

communicate with each other through on-chip buses. As

the VLSI process technology continuously advances,

the frequency and the amount of the data

communication between cores increase substantially.

As a result, the ability of on-chip buses to deal with the

large amount of data traffic becomes a dominant factor

for the overall performance. The design of on-chip

buses can be divided into two parts: bus interface and

bus architecture. The bus interface involves a set of

interface signals and their corresponding timing

relationship, while the bus architecture refers to the

internal components of buses and the interconnections

among the IP cores. The widely accepted on-chip bus,

AMBA AHB [1], defines a set of bus interface to

facilitate basic (single) and burst read/write

transactions. AHB also defines the internal bus

architecture, which is mainly a shared bus composed of

multiplexors. The multiplexer-based bus architecture

works well for a design with a small number of IP

cores. When the number of integrated IP cores

increases, the communication between IP cores also

increase and it becomes quite frequent that two or more

master IPs would request data from different slaves at

the same time. The shared bus architecture often cannot

provide efficient communication since only one bus

transaction can be supported at a time.

 To solve this problem, two bus protocols have

been proposed recently. One is the Advanced extensible

Interface protocol (AXI) proposed by the ARM

company. AXI defines five independent channels (write

address, write data, write response, read address, and

read data channels). Each channel involves a set of

signals. AXI does not restrict the internal bus

architecture and leaves it to designers. Thus designers

are allowed to integrate two IP cores with AXI by either

connecting the wires directly or invoking an in-house

bus between them. The other bus interface protocol is

proposed by a non-profitable organization, the Open

Core Protocol – AHB [2]. AHB is an interface (or

socket) aiming to standardize and thus simplify the

system integration problems. It facilitates system

integration by defining a set of concrete interface (I/O

signals and the handshaking protocol) which is

independent of the bus architecture. Based on this

interface IP core designers can concentrate on designing

the internal functionality of IP cores, bus designers can

emphasize on the internal bus architecture, and system

integrators can focus on the system issues such as the

requirement of the bandwidth and the whole system

architecture. In this way, system integration becomes

much more efficient. Most of the bus functionalities

defined in AXI and AHB are quite similar. The most

conspicuous difference between them is that AXI

divides the address channel into independent write

address channel and read address channel such that read

and write transactions can be processed simultaneously.

However, the additional area of the separated address

channels is the penalty. Some previous work has

investigated on-chip buses from various aspects. The

work presented in [3] and [4] develops high-level

AMBA bus models with fast simulation speed and high

timing accuracy. The authors in [7] propose an

automatic approach to generate high-level bus models

from a formal channel model of AHB. In both of the

above work, the authors concentrate on fast and

accurate simulation models at high-level but did not

provide real hardware implementation details. In [9],

the authors implement the AXI interface on shared bus

architecture. Even though it costs less in area, the

benefit of AXI in the communication efficiency may be

limited by the shared-bus architecture. In this paper we

propose a high-performance on-chip bus design with

International Journal of Engineering In Advanced Research
Science and Technology ISSN: 2278-256

November 2016

VOLUME -2

ISSUE-4

Page:7932-37

AHB as the bus interface. We choose AHB because it is

open to the public and AHB has provided some free

tools to verify this protocol. Our proposed bus

architecture features crossbar/partial -crossbar based

interconnect and realizes most transactions defined in

AHB, including 1) single transactions,2) burst

transactions, 3) lock transactions, 4) pipelined

transactions, and 5) out-of-order transactions. In

addition, the proposed bus is flexible such that one can

adjust the bus architecture according to the system

requirement.

The remainder of this paper is organized as

follows. In section 2The various advanced

functionalities of on-chip buses are described. Section 3

describes functioning of the AHB Block Diagram.

Section 4 gives the Implementation of AHB

master/slave FSM. Section 5 is experimental results

which show the efficiency on both simulation speed and

data communication. Conclusions are then drawn in

Section 6.

II. AHB bus functionalities

The various bus functionalities includes

1) Burst

 2) Lock

 3) Pipelined and

 4) Out-of-Order transactions.

 Burst transactions

The burst transactions allow the grouping of

multiple transactions that have a certain address

relationship, and can be classified into multi-request

burst and single-request burst according to how many

times the addresses are issued. FIGURE 1 shows the

two types of burst read transactions. The multi-request

burst as defined in AHB is illustrated in FIGURE 1(a)

where the address information must be issued for each

command of a burst transaction (e.g., A11, A12, A13

and A14). This may cause some unnecessary overhead.

In the more advanced bus architecture, the single-

request burst transaction is supported. As shown in

FIGURE 1(b), which is the burst type defined in AHB,

the address information is issued only once for each

burst transaction. In our proposed bus design we

support both burst transactions such that IP cores with

various burst types can use the proposed on-chip bus

without changing their original burst behaviour.

FIGURE 1. Burst transactions

 Lock transactions

Lock is a protection mechanism for masters that

have low bus priorities. Without this mechanism the

read/write transactions of masters with lower priority

would be interrupted whenever a higher-priority master

issues a request. Lock transactions prevent an arbiter

from performing arbitration and assure that the low

priority masters can complete its granted transaction

without being interrupted.

 Pipelined transactions

 Figure 2(a) and 2(b) show the difference between

non-pipelined and pipelined read transactions. In

FIGURE 2(a), for a non-pipelined transaction a read

data must be returned after its corresponding address is

issued plus a period of latency. For example, D21 is

sent right after A21 is issued plus t. For a pipelined

transaction as shown in FIGURE 2(b), this hard link is

not required. Thus A21 can be issued right after A11 is

issued without waiting for the return of data requested

by A11 (i.e., D11-D14).

FIGURE 2. Pipeline transactions

 Out-of-order transactions

The out-of-order transactions allow the return order

of responses to be different from the order of their

requests. These transactions can significantly improve

the communication efficiency of an SOC system

containing IP cores with various access latencies as

illustrated in FIGURE 3.In FIGURE 3(a) which does

not allow out-of-order transactions, the corresponding

responses of A21 and A31must be returned after the

response of A11. With the support of out-of-order

transactions as shown in FIGURE 3(b), the response

with shorter access latency (D21, D22 and D31) can be

returned before those with longer latency (D11-D14)

and thus the transactions can be completed in much less

cycles.

FIGURE 3. Out-of-order transactions

International Journal of Engineering In Advanced Research
Science and Technology ISSN: 2278-256

November 2016

VOLUME -2

ISSUE-4

Page:7932-37

III. Functional blocks of the AHB bus

The architecture of the proposed on-chip bus is

illustrated in FIGURE 4, where we show an example

with four masters and four slaves. A crossbar

architecture is employed such that more than one master

can communicate with more than one slave

simultaneously. If not all masters require the accessing

paths to all slaves, partial crossbar architecture is also

allowed. The main blocks of the proposed bus

architecture are described next.

 Arbiter

In traditional shared bus architecture, resource

contention happens whenever more than one master

requests the bus at the same time. For a crossbar or

partial crossbar architecture, resource contention occurs

when more than one master is to access the same slave

simultaneously. In the proposed design each slave IP is

associated with an arbiter that determines which master

can access the slave. The arbiter sends grant signal to

the requested master.

 Decoder

Since more than one slave exists in the system, the

decoder decodes the address and decides which slave

return response to the target master. In addition, the

proposed decoder also checks whether the transaction

address is illegal or nonexistent and responses with an

error message if necessary.

 Multiplexer

A multiplexer is used to solve the problem of

resource contention when more than one slave returns

the responses to the same master. It selects the

corresponding slave/master according to the given

selection lines. There are multiplexers one is address

and control mux and the two are for data read and write.

 Master/Slave

Master and Slave are the entities consisting of

different Address and Data Locations. Only the master

can send the commands and is the controlling entity.

The Slave responds to commands presented to it, either

by accepting data from the master, or representing data

to the master.

 FSM-M & FSM-S

FSM-M acts as a master and generates the AHB

signals of a master, while FSM-S acts as a slave and

generates those of a slave.

IV. Implementat ion of AHB

 The request issued by system is given to slave

by MCmd signal. Similarly, in Write operation, the

input address and data provided by the system will be

given to slave through the signal MAddr and MData

and when those information’s are accepted, slave will

give SCmd Accept signal which ensures that the system

can issue next request. During Read operation, system

issues the request

FIGURE 4.AHB Block Diagram

and address to slave which will set SResp and fetch the

corresponding data that is given to output through

Sdata.The design of the Open Core Protocol starts with

the initial study based on which the development of

FSM(Finite State Machine) for the various supporting

operation after which the development of VHDL for the

FSM.

FSM for AHB master: The Finite State Machine (FSM)

is developed for the simple write and read operation of

AHB Master. The simple write and read operation

indicates that the control goes to IDLE state after every

operation. Basically, the operation in the AHB will be

held in two phases.

 Request Phase

 Response Phase

Initially the control will be in IDLE state

(Control = “000”) at which all the outputs such as

MCmd, MAddr and MData are set to “don’t care”. The

system will issue the request to the master such write

request which leads to the WRITE state (Control =

“001”). In this state, the address and the data will be

given to the slave that is to be written and hence the

process will get over only when the SCmd Accept is

asserted to high. If SCmd Accept is not set, this

represents that the write operation still in process and

the control will be in the WRITE state itself. Once the

International Journal of Engineering In Advanced Research
Science and Technology ISSN: 2278-256

November 2016

VOLUME -2

ISSUE-4

Page:7932-37

write operation is over the control will go to the IDLE

state and then it will check for the next request.

figure 5: fsm forAHB master

When the read request is made, the control will

go to the READ state (Control = “010”) and the address

is send to the slave which in turn gives the SCmdAccept

signal that ends the request phase. Once the

SCmdAccept is set and SResp is not Data Valid (DVA),

the control will go the WAIT state and will be waiting

for the SResp signal. When the read operation is over

which represents that the SResp is set to DVA and the

data for the corresponding address is taken. Hence the

SResp signal ends the response phase and the control

will go the IDLE state, then checks for the next request.

FSM for AHB slave: The FSM for the AHB Slave

which has the simple write and read operation is

developed and is shown in the Figure 6

FIGURE 6. fsm for AHB slave

The slave will be set to the respective state

based on the MCmd issued by the master and the output

of this slave is that the SCmdAccept and SResp.

Initially control will be in the IDLE state and when the

master issues the command as write request, and then

the control will go the WRITE state in which the data

will be written to the corresponding memory address

location which is sent by the masters. Once the write

operation is finished, the SCmdAccept signal is set to

high and is given to the master. When MCmd is

given as read request, then the control will move to the

READ state in which the data will read from the

particular memory address location that is given by the

master. Hence the SCmdAccept is set to high and the

SResp is set to the DVA which represents that the read

operation over and control goes to the IDLE state.

Depending on whether a transaction is a read

or a write operation, the request and response processes

are different. So for burst, burst count is specified that is

burstsize both for read and write.

Scalable Encryption Algorithm (SEA):

Most present symmetric encryption algorithms result

from a trade-off between implementation cost and

resulting performances. In addition, they generally aim

to be implemented efficiently on a large variety of

platforms. In this paper, we take an opposite approach

and consider a context where we have very limited

processing resources and throughput requirements. For

this purpose, we propose low-cost encryption routines

(i.e. with small code size and memory) targeted for

processors with a limited instruction set (i.e. AND, OR,

XOR gates, word rotation and modular addition). The

proposed design is parametric in the text, key and

processor size, allows efficient combination of

encryption/decryption, “on-the-fly” key derivation and

its security against a number of recent cryptanalytic

techniques is discussed. Target applications for such

routines include any context requiring low-cost

encryption and/or authentication.

In this paper, we consequently consider a general

context where we have very limited processing

resources (e.g. a small processor) and throughput

requirements. It yields design criteria such as: low

memory requirements, small code size, limited

instruction set. In addition, we propose the flexibility as

another unusual design principle. SEAn,b is parametric

in the text, key and processor size. Such an approach

was motivated by the fact that many algorithms behave

differently on different platforms (e.g.8-bit or 32-bit

processors). In opposition, SEAn,b allows to obtain a

small encryption routine targeted to any given

processor, the security of the cipher being adapted in

function of its key size. Beyond these general

guidelines, alternative features were wanted, including

the efficient combination of encryption and decryption

or the ability to derive keys “on the fly”.

International Journal of Engineering In Advanced Research
Science and Technology ISSN: 2278-256

November 2016

VOLUME -2

ISSUE-4

Page:7932-37

V. RESULTS

SEA RESULTS

VI. Conclusion

An AHB-based MC is designed ,realized and tested in

the present concept. The implementation was carried

out using Vhdl HDL for SOC solutions. The design has

taken care of balance between area overhead and

speed.. A bridge between AHB master and slave with

supportive application of MC along with SEA is also

proposed and the resultant efficiency in respect of area

overhead, speed and power optimization is provided in

this concept.

REFERENCES

. [1] Advanced Microcontroller Bus Architecture

(AMBA) Specification Rev 2.0 & 3.0,

ttp://www.arm.com.

[2] Open Core Protocol (OCP) Specification,

http://www.ocpip.org/home.

[3] Y.-T. Kim, T. Kim, Y. Kim, C. Shin, E.-Y. Chung,

K.-M. Choi, J.-T. Kong, S.-K. Eo, “Fast and Accurate

Transaction Level Modeling of an Extended AMBA2.0

Bus Architecture,”

Design, Automation, and Test in Europe, pages 138-

139, 2005.

[4] James Aldis, “Use of OCP in OMAP 2420”,

http://www.ocpip.org/, 2005.

[5] G. Schirner and R. Domer, “Quantitative Analysis

of Transaction Level Models for the AMBA Bus,”

Design, Automation, and Test in Europe, 6 pages, 2006.

[6] David C.-W. Chang, I.-T. Liao, J.-K. Lee, W.-F.

Chen, S.-Y. Tseng and C.-W. Jen, “PAC DSP Core and

Application Processors,” International Conference on

Multimedia and

Expo, pages 289-292, 2006.

[7] Partha Pratim Pande, Cristian Grecu, Michael Jones,

Andr´e vanov, and Resve Saleh, “Performance

evaluation and design trade-offs for network-on-chip

interconnect architectures”, IEEE Trans. Computers,

vol. 54, no. 8, pp. 1025–1040, Aug. 2005.

[8] IBM Corporation, “Prioritization of Out-of-Order

Data Transfers on Shared Data Bus,” US Patent No.

7,392,353,

2008.

[9] N.Y.-C. Chang, Y.-Z. Liao and T.-S. Chang,

“Analysis of Shared-link AXI,” IET Computers &

Digital Techniques, Volume 3, Issue 4, pages 373-383,

2009.

[10] C.-K. Lo and R.-S. Tsay, “Automatic Generation

of Cycle Accurate and Cycle Count Accurate

Transaction Level Bus Models from a Formal Model,”

Asia and South Pacific Design Automation Conference,

pages 558-563, 2009.

