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ABSTRACT:

The main objective of this project is to"design a non-binary OLS code as applicable to-multilevel a PCM. A PCM
utilizes a multilevel scheme that permits to increase the storage density using ternary, -quaternary and in the near
future, octal cells. The resistance drift that occurs in a multilevel PCM due to the resistive characteristics of GST
may cause errors in the stored information, thus degrading data integrity. The proposed codes utilize a non-binary
scheme that is capable of correcting multi-symbol errors with a parallel decoder. Memory cells have been protected
from soft errors for more than a decade; due to the increase in soft error rate in logic circuits, the encoder and
decoder circuitry around the memory blocks have become susceptible to soft errors as well and must also be
protected. A new approach to design fault-secure encoder and decoder circuitry for memory designs is introduced.
The key novel contribution of this project is identifying and defining a new class of error-correcting codes whose
redundancy makes the design of fault-secure detectors (FSD) particularly simple. OLS codes satisfies a new,
restricted definition for ECCs which guarantees that the ECC codeword has an appropriate redundancy: structure
such that it can detect multiple errors occurring in both the stored codeword in memory and the surrounding
circuitries. The parity-check Matrix of an FSD-ECC has a particular structure that the decoder circuit, generated
from the parity-check Matrix, is Fault-Secure.

KEYWORDS: Fault-secure detectors (FSD), Error Correcting Codes (ECC), Fault tolerant, Phase Changed
Memory (PCM),
INTRODUCTION:
LATIN SQUARE:
Lattices are regular arrangements of points in The name "Latin square"™ was inspired by

Euclidean space. They Naturally occur in many
settings, like crystallography, sphere packings
(stacking oranges), etc. They Have many applications
in computer science and ‘mathematics, including the
solution of integer programming problems,
Diophantine approximation, cryptanalysis, the design
of error correcting co des for multi antenna systems,
and many more. Recently, Lattices have also
attracted much attention as a source of computational
hardness for the design of secure cryptographic
functions. In combinatorics and in experimental
design, a Latin square is an n x n array filled with n
different symbols, each occurring exactly once in
each row and exactly once in each column. An
example of a 3x3 Latin square is:

mathematical papers by Leonhard Euler (1707-
1783), who used Latin characters as symbols,[1] but
any set of symbols can be used: .in the above
example, the alphabetic sequence” A, B, C can be
replaced by the integer sequence 1, 2, 3.0rthogonal
array representation

If each entry of an n x n Latin square is written as a
triple (r,c,s), where r-is the row, c is the column, and
s is the symbol, we obtain a set of n” triples called the
orthogonal array representation of the square. For
example, the orthogonal array representation of the
following Latin square is

{(1,1,1),(1,2,2),(1,3,3),(2,1,2),(2,2,3),(2,3,1),(3,1,3).(
321),(332)}
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where for example the triple (2,3,1) means that in
row 2 and column 3 there is the symbol 1. The
definition of a Latin square can be written in terms of
orthogonal arrays:

A Latin square is the set of all triples (r,c,s), where 1
<r, ¢, s <n, such that all ordered pairs (r,c) are
distinct, all ordered pairs (r,s) are distinct, and all
ordered pairs (c,s) are distinct. Memory system which
can tolerate errors in any part of the system,
including the storage unit, encoder and corrector
circuit, using the fault-secure detector is shown
below. There is a fault secure detector that can detect
any combination of errors in the received code-word
along with errors in the detector circuit. This fault-
secure detector can verify the correctness of the
encoder and corrector operation.
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Figure Block diagram of Fault Secure Encoder and
Decoder.

Design Structure:

In this section the design structure of the encoder,
corrector, and detector units of our proposed fault
secure encoder and decoder is provided.

Encoder

An n-bit code-word c¢, which encodes k-bit
information vector i is generated by multiplying the
k-bit information vector with k x n bit generator
matrix G, i.e, ¢ = i - G. Figure 6.8 shows the
generator matrix of (15, 7) EG-OLS code. all the
rows of the matrix are cyclic shifts of the first row.
This cyclic code generation does not generate a
systematic code and the information bits must be
decoded from the encoded vector, which is not
desirable for our fault-tolerant approach due to the

further complication and delay that it adds to the
operation.

The generator matrix of any cyclic code can be
converted into systematic form (G =[I : X])

CoCqy C2 €3 Cg C5Ca C7 CpCoCipCeqCi2CiaCig

Figure. The generator matrix of EG-OLS code of
(15, 7) in cyclic format
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Figure. The generator matrix of EG-OLS code of
(15,7)

Figure Shows the systematic generator matrix to
generate (15, 7) EG-OLS code. The encoded vector,
which is generated by the inner product of the
information vector and the generator matrix, consists
of information bits followed by parity bits, where
each parity bit is simply an inner /product of
information vector and a column of X, from G = [I :
X].

7 Information Bits
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Figure . The structure of an encoder circuit for (15, 7)

EG-OLS code.

Figure shows the encoder circuit to compute the
parity bits of the (15, 7) EG-OLS code. In this figure
i = (i0, ..., i6) is the information vector and will be
copied to c0, ..., c6 bits of the encoded vector, ¢, and
the rest of encoded vector, the parity bits, are linear
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sums (xor) of the information bits. If the building
block is two-input gates then the encoder circuitry
takes 22 twoinput xor gate. Since the systematic
generator matrix of EG-OLS and PG-OLS codes does

not have the standard row and column density, To
compute the area of an encoder circuitry the
corresponding systematic generator matrix has to be
constructed. Once the systematic generator matrix is
constructed the fanin size of the xor gates can be
determined by the column densities of the generator
matrix.

Fault Secure Detector:

The core of the detector operation-is-to generate the
syndrome vector, which is basically implementing
the following vector-matrix multiplication on the
received encoded vector ¢ and parity-check matrix H.

cH' =S.

CoCs CaCiq Civd Gt CiaCreyCyp

Error
Detector

Fig. Fault-secure detector for (15, 7, 5) OLS code

Therefore each bit of the syndrome vector is the
product of C with one row of the parity-check matrix.
This product is a linear binary sum over digits of C.
where the corresponding digit in the matrix row is-1.
This binary sum is implemented with an XOR gate.
Fig. shows the detector circuit for the (15, 7, 5) EG-
OLS code. Since the row weight of the parity-check
matrix is , to generate one digit of the syndrome
vector we need a —P Input XOR gate. An error is
detected if any of the syndrome bits has a nonzero
value. The final error detection signal is implemented
by an OR function of all the syndrome bits. The
output of this -input OR gate is the error detector
signal.

CORRECTOR:

One-step majority-logic correction is a fast and
relatively compact error-correcting technique [15].
There is a limited class of ECCs that are one-step-
majority correctable which include type-l two-
dimensional EG-OLS. In this section, we present a
brief review of this correcting technique. Then we
show the one-step majority-logic corrector for EG-
OLS codes.

1) One-Step Majority-Logic Corrector: One-step
majority logic correction is the procedure that
identifies the correct value of a each bit in the
codeword directly from the received codeword; this
is in contrast to the general message-passing error
correction strategy (e.g., [2]) which may demand
multiple iterations of error diagnosis and trial
correction. Avoiding iteration makes the correction
latency both small and deterministic. This technique
can be implemented serially to provide a compact
implementation or in parallel to minimize correction
latency. This method consists of two parts: 1)
generating a specific set of linear sums of the
received vector bits and 2) finding the majority value
of the computed linear sums. The majority value
indicates the correctness of the code-bit; under
consideration; if the majority value is 1, the bit is
inverted, otherwise it is kept unchanged.

|’l n-hit Coded Vector
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Fig. Serial one-step majority logic corrector structure

A linear sum of the received encoded vector bits can
be formed by computing the inner product of the
received vector and a row of a parity-check matrix.
This sum is called Parity-Check sum. A set of parity-
check sums is said to be orthogonal on a given code
bit if each of the parity-check sums include the code
bit but no other code bit is included in more than one
of these parity-check sums. If for each code bit there
are j parity-check sums that are orthogonal on it, then
the code is one-step majority-logic correctable up to
bj/2c bit errors. In a cyclic code, a set of j parity-
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check sums orthogonal on a code-word bit is
orthogonal on all the n code-word bits. Therefore,
using one set of parity-check matrix rows orthogonal
on one code bit, we can design a majority circuit that
corrects all the other bits, serially.

The one-step majority logic error correction is
summarized in the following procedure.

These steps correct a potential error in one code bit,
e.g.,cn—1.

1. The j parity-check sums orthogonal on cn—1 are
formed by computing the inner product of .the
received vector and the appropriate rows .of parity-
check matrix.

2. The J orthogonal check sums are fed into a
majority gate. The output of the majority gate
corrects the bit cn—1, by inverting the value of cn—1
if the output of majority gate is “1”.

The circuit implementing a serial one-step majority
logic corrector for (15; 7) EGOLS code is shown in
figure is circuit generates parity-check sums with
xor gates and then computes, the majority value of
the parity-check sums. Since each parity-check sum
is computed using a row of the parity-check matrix
and the row density of EG-OLS codes are _ then each
xor gate that computes the linear sum has inputs. The
single xor gate on the right, corrects the code bit
cn—1, using the output of the majority gate. Once the
code bit cn—1 is corrected the code-word is cyclic
shifted and code bit cn—2 is placed at cn—1 position
and will be corrected. The whole code-word can be
corrected in n rounds.

PARALLEL CORRECTOR: Above one step
serial majority logic corrector is enhanced by
combining majority gate and row density to
produce pipelining concept. In order to combining
these two blocks, resource utilization technique is
used in this concept,

n-bit Coded Vector
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RESULT:
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PARAMETER | AREA TIME

EXISTING 557 3.941

PROPOSED 381 3.349

CONCLUSION:

In this report, a fully fault-tolerant memory system
that is capable of tolerating errors not only in the
memory bits but also in the supporting logic
including the ECC encoder and decoder. OLS codes
are proved as part of a new subset of ECCs that have
FSDs. Using these FSDs a fault-tolerant encoder and
corrector is designed with parallelism providence is
also main criteria in communication systems. Here, in
this concept OLS is designed with parallel correction
algorithm. Finally, an enhanced secured and fault
tolerant memory is designed and simulated in Xilinx
ise14.5 version.
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